giai phuong trinh
A=\(\sqrt{x-2}+\sqrt{10-x}=x^2-12x+40\)
cho phuong trinh:\(\dfrac{2+\sqrt{x}}{\sqrt{2}+\sqrt{2+\sqrt{x}}}+\dfrac{2-\sqrt{x}}{\sqrt{2}-\sqrt{2-\sqrt{x}}}=\sqrt{2}\)
a/tim dieu kien cua x de phuong trinh co nghia
b/giai phuong trinh
a: ĐKXĐ: x>=0
b: \(\Leftrightarrow\dfrac{2\sqrt{2}-2\sqrt{2-\sqrt{x}}+\sqrt{2x}-\sqrt{x\left(2-\sqrt{x}\right)}+2\sqrt{2}+2\sqrt{2+\sqrt{x}}-\sqrt{2x}-\sqrt{x\left(2+\sqrt{x}\right)}}{2-2+\sqrt{x}}=\sqrt{2}\)
\(\Leftrightarrow4\sqrt{2}-2\sqrt{x\left(\sqrt{x}+2\right)}=\sqrt{2x}\)
\(\Leftrightarrow\sqrt{4x\left(\sqrt{x}+2\right)}=4\sqrt{2}-\sqrt{2x}\)
\(\Leftrightarrow4x\left(\sqrt{x}+2\right)=32-16\sqrt{x}+2x\)
\(\Leftrightarrow4x\sqrt{x}+8x-32+16\sqrt{x}-2x=0\)
=>\(x\in\left\{0;1.2996\right\}\)
\(x^2-3x+\sqrt{x+5}-\sqrt{10-4x}=-2\)
Giai phuong trinh
khong vo nghiem dau ban a, nham nghiem thi no ra x=1 do ban
giai cac phuong trinh sau bang cach bien doi chung thanh nhung phuong trinh voi ve trai la mot binh phuong ve phai la mot hang so
a. \(4x^2-12x-7=0\)
b.\(x^2+2\sqrt{3}x-1=0\)
c. \(3x^2-6x+1=0\)
d.\(2x^2-4\sqrt{2}x+2=0\)
a/ \(\left(2x\right)^2-2.2x.3+3^2-16=0\)
\(\Leftrightarrow\left(2x-3\right)^2=16\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=4\\2x-3=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2x=7\\2x=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
b/ \(x^2+2\sqrt{3}.x+\left(\sqrt{3}\right)^2-4=0\)
\(\Leftrightarrow\left(x+\sqrt{3}\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{3}=2\\x+\sqrt{3}=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2-\sqrt{3}\\x=-2-\sqrt{3}\end{matrix}\right.\)
c/ \(3x^2-6x+3-2=0\)
\(\Leftrightarrow3\left(x^2-2x+1\right)=2\)
\(\Leftrightarrow\left(x-1\right)^2=\dfrac{2}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{\sqrt{6}}{3}\\x-1=\dfrac{-\sqrt{6}}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{6}}{3}\\x=\dfrac{3-\sqrt{6}}{3}\end{matrix}\right.\)
d/ \(\left(\sqrt{2}x\right)^2-2.2.\left(\sqrt{2}x\right)+2^2-2=0\)
\(\Leftrightarrow\left(\sqrt{2}x-2\right)^2=2\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2}x-2=\sqrt{2}\\\sqrt{2}x-2=-\sqrt{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{2}x=2+\sqrt{2}\\\sqrt{2}x=2-\sqrt{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}+1\\x=\sqrt{2}-1\end{matrix}\right.\)
giai phuong trinh
\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\)
ĐK: \(x\ge-2\)
\(pt\Leftrightarrow\frac{x+5-\left(x+2\right)}{\sqrt{x+5}+\sqrt{x+2}}.\left(1+\sqrt{\left(x+5\right)\left(x+2\right)}\right)=3\)
\(\Leftrightarrow3.\frac{1+\sqrt{x+2}.\sqrt{x+5}}{\sqrt{x+2}+\sqrt{x+5}}=3\)
\(\Leftrightarrow1+\sqrt{x+2}\sqrt{x+5}=\sqrt{x+2}+\sqrt{x+5}\)
\(\Leftrightarrow\left(\sqrt{x+2}-1\right)\left(\sqrt{x+5}-1\right)=0\)
\(\Leftrightarrow\sqrt{x+2}=1\text{ hoặc }\sqrt{x+5}=1\)
\(\Leftrightarrow x=-1\text{ (nhận) hoặc }x=-4\text{ (loại)}\)
Vậy tập nghiệm của pt là: \(S=\left\{1\right\}\)
Giai phuong trinh
\(\sqrt{x-\sqrt{x-2}}+\sqrt{x+\sqrt{x-2}}=3\)
\(\sqrt{x-\sqrt{x-2}}+\sqrt{x+\sqrt{x-2}}=3\)
\(\Leftrightarrow2x+2\sqrt{\left(x-\sqrt{2-x}\right)\left(x+\sqrt{x-2}\right)}=9\)
\(\Leftrightarrow2\sqrt{\left(x-\sqrt{x-2}\right)\left(x+\sqrt{x+2}\right)}=9-2x\)
\(\Leftrightarrow4\left(x-\sqrt{x-2}\right)\left(x+\sqrt{x-2}\right)=\left(9-2x\right)^2\)
\(\Leftrightarrow4x^2-4x+8=81-36x+4x^2\)
\(\Leftrightarrow-4x+8=81-36x\)
\(\Leftrightarrow-4x=81-36x-8\)
\(\Leftrightarrow-4x=-36x+73\)
\(\Leftrightarrow-4x+36x=73\)
\(\Leftrightarrow32x=73\)
\(\Leftrightarrow x=\frac{73}{32}\)
Vậy: nghiệm phương trình là: \(\left\{\frac{73}{32}\right\}\)
Lỗi sai ngu người nhất của Chihiro.Quên viết ĐKXĐ ak em
\(\sqrt{x-\sqrt{x-2}}+\sqrt{x+\sqrt{x-2}}=3\)
\(ĐKXĐ:x\ge2\)
Bình phương 2 vế của pt ta được
\(2x+2\sqrt{\left(x-\sqrt{x-2}\right)\left(x+\sqrt{x-2}\right)}=9\)
\(\Leftrightarrow2\sqrt{x^2-x+2}=9-2x\)
\(\Leftrightarrow\hept{\begin{cases}9-2x\ge0\Leftrightarrow\frac{9}{2}\ge x\\4\left(x^2-x+2\right)=81-36x+4x^2\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow32x-73=0\Leftrightarrow x=\frac{73}{32}\left(tmDK\right)\)
Vậy \(S=\left\{\frac{73}{32}\right\}\)
p/s:học hỏi đi con.
Không thích thì không ghi được không ạ? :))
\(\sqrt{x-1+2\sqrt{x-2}}+\sqrt{x-1-2\sqrt{x-2}}giai~phuong\cdot trinh'\)
Giai phuong trinh: \(\dfrac{2+\sqrt{x}}{\sqrt{2}+\sqrt{2+\sqrt{x}}}+\dfrac{2-\sqrt{x}}{\sqrt{2}-\sqrt{2-\sqrt{x}}}=\sqrt{2}\)
ĐK: \(0< x\le4\)
Đặt \(\sqrt{2+\sqrt{x}}=a\left(a>0\right)\) ; \(\sqrt{2-\sqrt{x}}=b\left(b\ge0\right)\)
=> \(a^2+b^2=2+\sqrt{x}+2-\sqrt{x}=4\) (1)
Ta có: \(\dfrac{a^2}{\sqrt{2}+a}+\dfrac{b^2}{\sqrt{2}-b}=\sqrt{2}\)
<=> \(\dfrac{a^2.\sqrt{2}-a^2b+b^2.\sqrt{2}+ab^2}{2+\sqrt{2}\left(a-b\right)-ab}=\sqrt{2}\)
<=> \(\left(a^2+b^2\right)\sqrt{2}+ab\left(b-a\right)=2\sqrt{2}+2\left(a-b\right)-ab.\sqrt{2}\)
<=> \(4\sqrt{2}+ab\left(b-a\right)=2\sqrt{2}+2\left(a-b\right)-ab.\sqrt{2}\) ( Theo 1)
<=> \(\left(a-b\right)\left(2+ab\right)=2\sqrt{2}+ab.\sqrt{2}\)
<=> \(\left(a-b-\sqrt{2}\right)\left(ab+2\right)=0\)
<=> \(\left[{}\begin{matrix}ab+2=0\\a-b-\sqrt{2}=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}ab=-2\\a-b=\sqrt{2}\end{matrix}\right.\) mà a2 + b2 = 4
Xét \(\left\{{}\begin{matrix}ab=-2\\a^2+b^2=4\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left(a-b\right)^2=8\\\left(a+b\right)^2=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}a-b=\pm\sqrt{8}\\a+b=0\end{matrix}\right.\) ( Loại vì \(a>0;b\ge0\) )
Xét \(\left\{{}\begin{matrix}a-b=\sqrt{2}\\a^2+b^2=4\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=b+\sqrt{2}\\\left(b+\sqrt{2}\right)^2+b^2=4\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}a=b+\sqrt{2}\\2b^2+2b.\sqrt{2}-2=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=b+\sqrt{2}\\b^2+b.\sqrt{2}-1=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}a=b+\sqrt{2}\\\left[{}\begin{matrix}b=\dfrac{\sqrt{6}-\sqrt{2}}{2}\\b=\dfrac{-\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=\dfrac{\sqrt{6}+\sqrt{2}}{2}\\b=\dfrac{\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\)
#Lề: Bn lấy cái đề ở đâu hay v?
v cac bac e giai xong lau roi cac bac a voi lai co cach giai ko can dai nhu the dau nhe
Giai phuong trinh : \(\frac{2+\sqrt{x}}{\sqrt{2}+\sqrt{\sqrt{x}+2}}+\frac{2-\sqrt{x}}{\sqrt{2}-\sqrt{2-\sqrt{x}}}=\sqrt{2}\)
Xin lỗi bạn nhiều nhiều lắm mình không biết làm bài này vì mình chưa học
không cần đâu bạn à bài này mình giải được rồi
giai phuong trinh \(x^2+\sqrt{2-x}=2x^2\sqrt{2-x}\)
giai phuong trinh : \(x-10=\sqrt{x}+2\)
\(\Leftrightarrow x-\sqrt{x}-12=0\)
\(\Leftrightarrow x=16\)
\(\Leftrightarrow x-\sqrt{x}-12=0\)
\(\Rightarrow x=16\)
\(\Leftrightarrow x-\sqrt{x-12=0}\)
\(\Leftrightarrow x=16\)