a/b+c + b/c+a + c/a+b =1 . Chứng minh rằng a^2/b+c + b^2/c+a + c^2/a+b =0
mọi người giúp tí nha
Cho a/b=b/c. Chứng minh rằng:
a^2+b^2/b^2+c^2=a/c (giải dài tí nha. hi hi!!)
Ta có:\(\frac{a}{b}=\frac{b}{c}=>\frac{a}{b}.\frac{b}{c}=\frac{a}{b}.\frac{a}{b}=>\frac{a.b}{b.c}=\frac{a^2}{b^2}=>\frac{a}{c}=\frac{a^2}{b^2}\)
\(\frac{a}{b}=\frac{b}{c}=>\frac{a}{b}.\frac{b}{c}=\frac{b}{c}.\frac{b}{c}=>\frac{a.b}{b.c}=\frac{b^2}{c^2}=>\frac{a}{c}=\frac{b^2}{c^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\)
=>\(\frac{a}{c}=\frac{a^2+b^2}{b^2+c^2}\)
1)cho a/b=c/d chứng minh rằng a.b/c.d=(a+b)^2/(c+d)^2 . ( giúp mình với nha )
2)cho a/b=b/c chứng minh rằng a^2+b^2/b^2+c^2=a/c . ( giúp mình với nha )
Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt;c=dt\)
Thay vào từng vế ta có
\(\frac{a.b}{c.d}=\frac{bt.b}{dt.d}=\frac{b^2.t}{d^2.t}=\frac{b^2}{d^2}\) (1)
\(\frac{\left(bt+b\right)^2}{\left(dt+d\right)^2}=\frac{b^2\left(t+1\right)^2}{d^2\left(t+1\right)^2}=\frac{b^2}{d^2}\) (2)
Từ (1) và (2) => ĐPCM
a/b=c/d
=> a/c = b/d
Áp dụng tính chất dãy tỉ số bằng nhau có :
a/c = b/d = a+b/c+d
=> (a/c)mũ 2 = (b/d)mũ 2 = a/c.b/d= ( a+b/c+d ) mũ 2
=> a/c.b/d= ( a+b/c+d ) mũ 2
=> a.b/c.d = (a+b)mũ 2 / (c + d ) mũ 2
=> dpcm
Ta có a/b = c/d
=> a/c= b/d
adtccdtsbn ta có :
chú ý khánh linh nhớ mai đãi kem nha viết mỏi tay quá cơ
TỚ VIẾT ĐỀ CHO BẠN TỚ MONG CÁC BẠN ĐỪNG ĐỂ Ý NHA
1) Cho a,b,c thộc đoạn 0,1 thỏa mãn a+b+c=2. chứng minh rằng a^2 +b^2+c^2<=2
2) cho ................................ chứng minh rằng a(1-b)+b(1-c)+c(1-a)<=1
3)...................................................................... a+b^2+c^3-ab-bc-ca<=1
4) cho a,b,c là độ dài 3 cạnh ta giác và a+b+c=2. chứng minh rằng a^2+b^2+c^2<2
5)...........................................................a+b+c=1. chứng minh rằng a^2+b^2+c^2 <1/2
\(https://scontent.fhph1-1.fna.fbcdn.net/v/t34.0-12/19987311_122536408488931_1351154453_n.jpg?oh=553755e5363013e1853ab6f5ed63a600&oe=59BF5CA7\)https://scontent.fhph1-1.fna.fbcdn.net/v/t34.0-12/19987311_122536408488931_1351154453_n.jpg?oh=553755e5363013e1853ab6f5ed63a600&oe=59BF5CA7
Ấn vào linh đấy ế
Chứng minh các đẳng thức sau: (nhớ dùng các hằng đẳng thức 1,2,3,4 hoặc 5 nha)
1) a^3+b^3+c^3-abc= (a+b+c).(a^2+b^2+c^2-ab-bc-ca)
2) a(b+c)^2+b(c+a)^2+c(a+b)^2-4abc= (a+b).(b+c).(c+a)
3) Cho a+b+c=0. Chứng minh: a^3+b^3+c^3=3abc
Các bạn giải rõ cho mình tí, đừng làm tắt nhiều quá, cảm ơn. Ai nhanh tớ tích cho nha, làm từng câu cũng đc.
1) a3+b3+c3-3abc = (a+b)3-3ab(a+b)+c3-3abc
= (a+b+c)(a2+2ab+b2-ab-ac+c2) -3ab(a+b+c)
= (a+b+c)( a2+b2+c2-ab-bc-ca)
Vì a+b+c=0
=> a+b=-c
=> (a+b)3= (-c)3
=> a3+b3+3ab(a+b) = (-c)3
=> a3+b3+c3= 3abc
Chứng minh rằng nếu a^2 +b^2+c^2= a×b+a×c+b×c .Thì a=b=c
Mọi người giúp em với
chứng minh nha mọi người giúp mình với
a^2+b^2+c^2+d^2+1>=a+b+c+d
a^2+b^2+c^2+d^2+e^2>=a(b+c+d+e)
Biến đổi tương đương:
\(\Leftrightarrow\left(a^2-a+\dfrac{1}{4}\right)+\left(b^2-b+\dfrac{1}{4}\right)+\left(c^2-c+\dfrac{1}{4}\right)+\left(d^2-d+\dfrac{1}{4}\right)\ge0\)
\(\Leftrightarrow\left(a-\dfrac{1}{2}\right)^2+\left(b-\dfrac{1}{2}\right)^2+\left(c-\dfrac{1}{2}\right)^2+\left(d-\dfrac{1}{2}\right)^2\ge0\) (luôn đúng)
b.
\(\Leftrightarrow\left(\dfrac{a^2}{4}-ab+b^2\right)+\left(\dfrac{a^2}{4}-ac+c^2\right)+\left(\dfrac{a^2}{4}-ad+d^2\right)+\left(\dfrac{a^2}{4}-ae+e^2\right)\ge0\)
\(\Leftrightarrow\left(\dfrac{a}{2}-b\right)^2+\left(\dfrac{a}{2}-c\right)^2+\left(\dfrac{a}{2}-d\right)^2+\left(\dfrac{a}{2}-e\right)^2\ge0\) (luôn đúng)
Ai giúp mình với
Cho 3 số a,b,c# 0 và (a+b+c)^2=a^2+b^2+c^2.Chứng minh rằng : 1/a^3+1/b^3+1/c^3=3/abc
thanks nha!!))
Từ \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc\)
Mà \(\left(a+b+c\right)^2=a^2+b^2+c^2\)
\(\Rightarrow2ab+2ac+2bc=0\)
\(\Rightarrow2\left(ab+ac+bc\right)=0\)
\(\Rightarrow ab+ac+bc=0\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{1}{a}=-\left(\frac{1}{b}+\frac{1}{c}\right)\). Khi đó
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{b^3}+\frac{1}{c^3}-\left(\frac{1}{b}+\frac{1}{c}\right)^3=-\frac{3}{bc}\left(\frac{1}{b}+\frac{1}{c}\right)=-\frac{3}{bc}\cdot\frac{-1}{a}=\frac{3}{abc}\)
Cho a/b+c + b/c+a + c/a+b = 1. Chứng minh rằng: a/b+c + b/c+a + c/a+b=1. Chứng minh rằng a^2/b+c + b^2/c+a + c^2/a+b
Cho : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)
Chứng minh rằng : \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)
Admin giúp em nha
) gt: a/(b+c) + b/(c+a) + c/(a+b) = 1
A = a²/(b+c) + b²/(c+a) + c²/(a+b) = a[a/(b+c)] + b[b/(c+a)] + c[c/(a+b)]
= a[a/(b+c) + 1 - 1] + b[b/(c+a) + 1 - 1] + c[c/(a+b) + 1 - 1]
= a.(a+b+c)/(b+c) -a + b.(a+b+c)/(c+a) - b + c.(a+b+c)/(a+b) - c
= (a+b+c)[a/(b+c) + b/(c+a) + c/(a+b)] - (a+b+c)
= (a+b+c) - (a+b+c) = 0
Ta có : \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)
\(\Rightarrow\frac{\left(a+b+c\right)a}{b+c}+\frac{\left(a+b+c\right)b}{c+a}+\frac{\left(a+b+c\right)c}{a+b}=a+b+c\)
\(\Rightarrow\frac{a^2+ab+ac}{b+c}+\frac{ab+b^2+bc}{c+a}+\frac{ac+bc+c^2}{a+b}=a+b+c\)
\(\Rightarrow\frac{a^2}{b+c}+\frac{ab+ac}{b+c}+\frac{b^2}{a+c}+\frac{ab+bc}{c+a}+\frac{c^2}{a+b}+\frac{ac+bc}{a+b}=a+b+c\)
\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}+a+b+c-a-b-c=0\)
\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\left(đpcm\right)\)
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=a.\left(\frac{a}{b+c}\right)+b.\left(\frac{b}{c+a}\right)+c.\left(\frac{c}{a+b}\right)\)
\(=a\left[\frac{a}{\left(b+c\right)}+1-1\right]+b\left[\frac{b}{c+a}+-1\right]+c\left[\frac{c}{a+b}+1-1\right]\)
\(=\frac{a\left(a+b+c\right)}{\left(b+c\right)}-a+\frac{b\left(a+b+c\right)}{\left(c+a\right)}-b+\frac{c\left(a+b+c\right)}{\left(a+b\right)}-c\)
\(=\left(a+b+c\right)\left[\frac{a}{\left(b+c\right)}+\frac{b}{\left(a+c\right)}+\frac{c}{a+b}\right]-\left(a+b+c\right)\)
\(\left(a+b+c\right)-\left(a+b+c\right)=0\)
\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\)