Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Transformers
Xem chi tiết
Lê Chí Cường
31 tháng 10 2015 lúc 23:07

Ta có:\(\frac{a}{b}=\frac{b}{c}=>\frac{a}{b}.\frac{b}{c}=\frac{a}{b}.\frac{a}{b}=>\frac{a.b}{b.c}=\frac{a^2}{b^2}=>\frac{a}{c}=\frac{a^2}{b^2}\)

\(\frac{a}{b}=\frac{b}{c}=>\frac{a}{b}.\frac{b}{c}=\frac{b}{c}.\frac{b}{c}=>\frac{a.b}{b.c}=\frac{b^2}{c^2}=>\frac{a}{c}=\frac{b^2}{c^2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\)

=>\(\frac{a}{c}=\frac{a^2+b^2}{b^2+c^2}\)

holicuoi
Xem chi tiết
Trần Đức Thắng
16 tháng 7 2015 lúc 8:05

Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt;c=dt\)

Thay vào từng vế ta có 

     \(\frac{a.b}{c.d}=\frac{bt.b}{dt.d}=\frac{b^2.t}{d^2.t}=\frac{b^2}{d^2}\) (1)

     \(\frac{\left(bt+b\right)^2}{\left(dt+d\right)^2}=\frac{b^2\left(t+1\right)^2}{d^2\left(t+1\right)^2}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) => ĐPCM

Trần Bình Minh
23 tháng 9 2017 lúc 13:37

a/b=c/d 
=> a/c = b/d
Áp dụng tính chất dãy tỉ số bằng nhau có : 
a/c = b/d = a+b/c+d
=> (a/c)mũ 2 = (b/d)mũ 2 = a/c.b/d= ( a+b/c+d ) mũ 2 
=>   a/c.b/d= ( a+b/c+d ) mũ 2 
=> a.b/c.d = (a+b)mũ 2 / (c + d ) mũ 2 
=> dpcm

Nguyễn Thảo My
14 tháng 1 2018 lúc 21:17

Ta có a/b = c/d 

 => a/c= b/d 

adtccdtsbn ta có : 

vũ tiền châu
Xem chi tiết
Anh Nguyễn
16 tháng 9 2017 lúc 23:29

\(https://scontent.fhph1-1.fna.fbcdn.net/v/t34.0-12/19987311_122536408488931_1351154453_n.jpg?oh=553755e5363013e1853ab6f5ed63a600&oe=59BF5CA7\)https://scontent.fhph1-1.fna.fbcdn.net/v/t34.0-12/19987311_122536408488931_1351154453_n.jpg?oh=553755e5363013e1853ab6f5ed63a600&oe=59BF5CA7
Ấn vào linh đấy ế

Transformers
Xem chi tiết
Transformers
7 tháng 8 2016 lúc 17:12

help meeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Nguyễn Quỳnh Chi
7 tháng 8 2016 lúc 17:26

1) a3+b3+c3-3abc = (a+b)3-3ab(a+b)+c3-3abc

                           = (a+b+c)(a2+2ab+b2-ab-ac+c2) -3ab(a+b+c)

                           = (a+b+c)( a2+b2+c2-ab-bc-ca)

Nguyễn Quỳnh Chi
7 tháng 8 2016 lúc 17:35

Vì a+b+c=0

=> a+b=-c

=> (a+b)3= (-c)3

=> a3+b3+3ab(a+b) = (-c)3

=> a3+b3+c3= 3abc

Nguyen hoàng
Xem chi tiết
nguyễn văn nhật nam
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 3 2021 lúc 15:23

Biến đổi tương đương:

\(\Leftrightarrow\left(a^2-a+\dfrac{1}{4}\right)+\left(b^2-b+\dfrac{1}{4}\right)+\left(c^2-c+\dfrac{1}{4}\right)+\left(d^2-d+\dfrac{1}{4}\right)\ge0\)

\(\Leftrightarrow\left(a-\dfrac{1}{2}\right)^2+\left(b-\dfrac{1}{2}\right)^2+\left(c-\dfrac{1}{2}\right)^2+\left(d-\dfrac{1}{2}\right)^2\ge0\) (luôn đúng)

b.

\(\Leftrightarrow\left(\dfrac{a^2}{4}-ab+b^2\right)+\left(\dfrac{a^2}{4}-ac+c^2\right)+\left(\dfrac{a^2}{4}-ad+d^2\right)+\left(\dfrac{a^2}{4}-ae+e^2\right)\ge0\)

\(\Leftrightarrow\left(\dfrac{a}{2}-b\right)^2+\left(\dfrac{a}{2}-c\right)^2+\left(\dfrac{a}{2}-d\right)^2+\left(\dfrac{a}{2}-e\right)^2\ge0\) (luôn đúng)

Đỗ Luật
Xem chi tiết
Lightning Farron
8 tháng 12 2016 lúc 23:51

Từ \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc\)

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\Rightarrow2ab+2ac+2bc=0\)

\(\Rightarrow2\left(ab+ac+bc\right)=0\)

\(\Rightarrow ab+ac+bc=0\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{1}{a}=-\left(\frac{1}{b}+\frac{1}{c}\right)\). Khi đó

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{b^3}+\frac{1}{c^3}-\left(\frac{1}{b}+\frac{1}{c}\right)^3=-\frac{3}{bc}\left(\frac{1}{b}+\frac{1}{c}\right)=-\frac{3}{bc}\cdot\frac{-1}{a}=\frac{3}{abc}\)

 

 

Linh Hannie
Xem chi tiết
o0o I am a studious pers...
Xem chi tiết
Lãnh Hạ Thiên Băng
22 tháng 7 2016 lúc 20:09

) gt: a/(b+c) + b/(c+a) + c/(a+b) = 1 

A = a²/(b+c) + b²/(c+a) + c²/(a+b) = a[a/(b+c)] + b[b/(c+a)] + c[c/(a+b)] 

= a[a/(b+c) + 1 - 1] + b[b/(c+a) + 1 - 1] + c[c/(a+b) + 1 - 1] 

= a.(a+b+c)/(b+c) -a + b.(a+b+c)/(c+a) - b + c.(a+b+c)/(a+b) - c 

= (a+b+c)[a/(b+c) + b/(c+a) + c/(a+b)] - (a+b+c) 

= (a+b+c) - (a+b+c) = 0 
 

o0o I am a studious pers...
22 tháng 7 2016 lúc 20:20

Ta có : \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)

\(\Rightarrow\frac{\left(a+b+c\right)a}{b+c}+\frac{\left(a+b+c\right)b}{c+a}+\frac{\left(a+b+c\right)c}{a+b}=a+b+c\)

\(\Rightarrow\frac{a^2+ab+ac}{b+c}+\frac{ab+b^2+bc}{c+a}+\frac{ac+bc+c^2}{a+b}=a+b+c\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{ab+ac}{b+c}+\frac{b^2}{a+c}+\frac{ab+bc}{c+a}+\frac{c^2}{a+b}+\frac{ac+bc}{a+b}=a+b+c\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}+a+b+c-a-b-c=0\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\left(đpcm\right)\)

Louis Pasteur
22 tháng 7 2016 lúc 20:35

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=a.\left(\frac{a}{b+c}\right)+b.\left(\frac{b}{c+a}\right)+c.\left(\frac{c}{a+b}\right)\)

\(=a\left[\frac{a}{\left(b+c\right)}+1-1\right]+b\left[\frac{b}{c+a}+-1\right]+c\left[\frac{c}{a+b}+1-1\right]\)

\(=\frac{a\left(a+b+c\right)}{\left(b+c\right)}-a+\frac{b\left(a+b+c\right)}{\left(c+a\right)}-b+\frac{c\left(a+b+c\right)}{\left(a+b\right)}-c\)

\(=\left(a+b+c\right)\left[\frac{a}{\left(b+c\right)}+\frac{b}{\left(a+c\right)}+\frac{c}{a+b}\right]-\left(a+b+c\right)\)

\(\left(a+b+c\right)-\left(a+b+c\right)=0\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\)