Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trương Nam
Xem chi tiết
Mbfibat
30 tháng 11 2016 lúc 10:10

Ta có: \(\left(x+\frac{1}{x}\right)^3=x^3+\frac{1}{x^3}+3.1.\frac{1}{x}.\left(1+\frac{1}{x}\right)\)\(=a^3\)

                                \(< =>x^3+\frac{1}{x^3}+3.\left(1+\frac{1}{x}\right)=a^3\)

                                \(< =>x^3+\frac{1}{x^3}=a^3-3a\)

Lại có:       \(\left(x+\frac{1}{x}\right)^5=x^5+\frac{1}{x^5}+5.\left(x^3+\frac{1}{x^3}\right)+10.\left(x+\frac{1}{x}\right)=a^5\)

                                    \(< =>x^5+\frac{1}{x^5}+5.\left(a^3-3a\right)+10.a=a^5\)

                                      \(< =>x^5+\frac{1}{x^5}+5a^3-15a+10a=a^5\)

                                       \(< =>x^5+\frac{1}{x^5}=a^5-5a^3+5a\)

                              

Hoàng an
Xem chi tiết
Đỗ Tuệ Lâm
29 tháng 12 2021 lúc 8:33

đkxđ:\(x\ne5,x\ne-5\)

\(\dfrac{2x}{\left(x-5\right)\left(x+5\right)}-\dfrac{5}{x-5}-\dfrac{1}{x+5}\)

\(\dfrac{2x}{\left(x-5\right)\left(x+5\right)}-\dfrac{5x+25}{\left(x-5\right)\left(x+5\right)}-\dfrac{x-5}{\left(x-5\right)\left(x+5\right)}\)

\(\dfrac{2x-5x-25-x+5}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4x-20}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}=-\dfrac{4}{x-5}\)

thay x=1 vào bt A, ta được:

\(-\dfrac{4}{1-5}=1\)

Sgsdrdg ebay đh durham
Xem chi tiết
alibaba nguyễn
23 tháng 6 2017 lúc 19:34

Đề có nhầm không thế

Shinichi Kudo
23 tháng 6 2017 lúc 20:52

Theo mình là 5a

Nguyễn Huệ Lam
25 tháng 6 2017 lúc 7:23

SỬA ĐỀ

Cho \(x+\frac{1}{x}=a\). Tính biểu thức sau theo a: \(x^5+\frac{1}{x^5}\)   

Usagi Tsukino
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 12 2023 lúc 12:02

a: \(A=\left(1-\dfrac{5+\sqrt{5}}{1+\sqrt{5}}\right)\left(\dfrac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)

\(=\left(1-\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}\right)\left(\dfrac{-\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}-1\right)\)

\(=\left(1-\sqrt{5}\right)\left(-1-\sqrt{5}\right)\)

\(=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)=5-1=4\)

b: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >1\end{matrix}\right.\)

\(B=\dfrac{1}{2\sqrt{x}-2}-\dfrac{1}{2\sqrt{x}+2}+\dfrac{\sqrt{x}}{1-x}\)

\(=\dfrac{1}{2\left(\sqrt{x}-1\right)}-\dfrac{1}{2\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\)

\(=\dfrac{-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=-\dfrac{2}{\sqrt{x}+1}\)

c: Khi x=9 thì \(B=\dfrac{-2}{\sqrt{9}+1}=\dfrac{-2}{3+1}=-\dfrac{2}{4}=-\dfrac{1}{2}\)

d: |B|=A

=>\(\left|-\dfrac{2}{\sqrt{x}+1}\right|=4\)

=>\(\dfrac{2}{\sqrt{x}+1}=4\) hoặc \(\dfrac{2}{\sqrt{x}+1}=-4\)

=>\(\sqrt{x}+1=\dfrac{1}{2}\) hoặc \(\sqrt{x}+1=-\dfrac{1}{2}\)

=>\(\sqrt{x}=-\dfrac{1}{2}\)(loại) hoặc \(\sqrt{x}=-\dfrac{3}{2}\)(loại)

Mai Ngọc Phương
Xem chi tiết
Kiều Vũ Linh
5 tháng 12 2023 lúc 10:01

a) A = (x - 5)(x² + 5x + 25) - (x - 2)(x + 2) + x(x² + x + 4)

= x³ - 125 - x² + 4 + x³ + x² + 4x

= (x³ + x³) + (-x² + x²) + 4x + (-125 + 4)

= 2x³ + 4x - 121

b) Tại x = -2 ta có:

A = 2.(-2)³ + 4.(-2) - 121

= 2.(-8) - 8 - 121

= -16 - 129

= -145

c) x² - 1 = 0

x² = 1

x = -1; x = 1

*) Tại x = -1 ta có:

A = 2.(-1)³ + 4.(-1) - 121

= 2.(-1) - 4 - 121

= -2 - 125

= -127

*) Tại x = 1 ta có:

A = 2.1³ + 4.1 - 121

= 2.1 + 4 - 121

= 2 - 117

= -115

Hoàng an
Xem chi tiết
Tô Mì
26 tháng 1 2022 lúc 8:11

1. ĐKXĐ: \(x\ne\pm1\)

 

2. \(A=\left(\dfrac{x+1}{x-1}-\dfrac{x+3}{x+1}\right)\cdot\dfrac{x+1}{2}\)

\(=\dfrac{\left(x+1\right)^2-\left(x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{x^2+2x+1-x^2+4x-3}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{6x-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{2\left(x-3\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x-3}{x-1}\)

 

3. Tại x = 5, A có giá trị là:

\(\dfrac{5-3}{5-1}=\dfrac{1}{2}\)

 

4. \(A=\dfrac{x-3}{x-1}\) \(=\dfrac{x-1-3}{x-1}=1-\dfrac{3}{x-1}\)

Để A nguyên => \(3⋮\left(x-1\right)\) hay \(\left(x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}x-1=1\\x-1=-1\\x-1=3\\x-1=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\left(tmđk\right)\\x=0\left(tmđk\right)\\x=4\left(tmđk\right)\\x=-2\left(tmđk\right)\end{matrix}\right.\)

Vậy: A nguyên khi \(x=\left\{2;0;4;-2\right\}\)

 

Phùng Đức Hậu
Xem chi tiết
Akai Haruma
1 tháng 4 2021 lúc 22:33

Lời giải:
ĐKXĐ: $x\geq 0; x\neq 1; x\neq 25$

a) 

\(A=\frac{4\sqrt{x}}{\sqrt{x}-5}:\left[\frac{(\sqrt{x}-2)(\sqrt{x}+2)+\sqrt{x}-1}{(\sqrt{x}-1)(\sqrt{x}+2}+\frac{5-2\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+2)}\right]\)

\(=\frac{4\sqrt{x}}{\sqrt{x}-5}:\frac{x-4+\sqrt{x}-1+5-2\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+2)}\)

\(=\frac{4\sqrt{x}}{\sqrt{x}-5}:\frac{\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+2)}=\frac{4\sqrt{x}}{\sqrt{x}-5}:\frac{\sqrt{x}}{\sqrt{x}+2}=\frac{4\sqrt{x}}{\sqrt{x}-5}.\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{4(\sqrt{x}+2)}{\sqrt{x}-5}\)

b) Tại $x=81$ thì $\sqrt{x}=9$.

Khi đó: $A=\frac{4(9+2)}{9-5}=11$

c) $A< 4\Leftrightarrow \frac{\sqrt{x}+2}{\sqrt{x}-5}< 1$

$\Leftrightarrow \frac{7}{\sqrt{x}-5}< 0\Leftrightarrow \sqrt{x}-5< 0$

$\Leftrightarrow 0\leq x< 25$. Kết hợp với ĐKXĐ suy ra: $0\leq x< 25; x\neq 1$

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 1 2017 lúc 8:06

Khi x= 9 ta có  A = 9 + 2 9 − 5 = 3 + 2 3 − 5 = − 5 2

Đặng Vũ Ngọc Trân
Xem chi tiết