Những câu hỏi liên quan
Hoang Tran
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 7 2021 lúc 21:31

Đặt \(P=\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)

Ta có:

\(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow\sqrt{a^2+b^2}\ge\dfrac{\sqrt{2}}{2}\left(a+b\right)\)

Tương tự và cộng lại ta được BĐT bên trái

Dấu "=" xảy ra khi \(a=b=c\)

Bên phải:

Áp dụng BĐT Bunhiacopxki:

\(P^2\le3\left(a^2+b^2+b^2+c^2+c^2+a^2\right)=6\left(a^2+b^2+c^2\right)\)

Mặt khác do a;b;c là 3 cạnh của 1 tam giác:

\(\Rightarrow\left\{{}\begin{matrix}a+b>c\\a+c>b\\b+c>a\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}ac+bc>c^2\\ab+bc>b^2\\ab+ac>c^2\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)< 6\left(ab+bc+ca\right)\)

\(\Rightarrow P^2\le3\left(a^2+b^2+c^2\right)+3\left(a^2+b^2+c^2\right)< 3\left(a^2+b^2+c^2\right)+6\left(ab+bc+ca\right)\)

\(\Rightarrow P^2< 3\left(a+b+c\right)^2\Rightarrow P< \sqrt{3}\left(a+b+c\right)\)

Bình luận (2)
Big City Boy
Xem chi tiết
Trần Đức Thắng
Xem chi tiết
Trần Thị Loan
14 tháng 8 2015 lúc 6:30

+) Chứng minh: \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)

Áp dụng B ĐT Bu nhia có: (a+ b)2 \(\le\) 2(a2 + b2) => \(a+b\le\sqrt{2}.\sqrt{a^2+b^2}\)

Tương tự ta có: \(b+c\le\sqrt{2}.\sqrt{b^2+c^2};c+a\le\sqrt{2}.\sqrt{c^2+a^2}\)

Cộng từng vế của B ĐT trên => \(2.\left(a+b+c\right)\le\sqrt{2}.\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\)

=> \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)

Dấu "=" xảy ra khi a = b = c

+) Chứng minh \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}

Bình luận (0)
Trần Tuấn Trọng
Xem chi tiết
pham thi thu trang
13 tháng 9 2017 lúc 20:16

ta có \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Rightarrow a+b\le\sqrt{2\left(a^2+b^2\right)}\)

chứng minh tương tự ta cũng có 

\(b+c\le\sqrt{2\left(b^2+c^2\right)};c+a\le\sqrt{2\left(c^2+a^2\right)}\)

cộng các vế của các bdt lại , rồi bạn đưa \(\sqrt{2}\)ra ngoài, bạn sẽ có dpcm 

( phần chứng minh \(< \sqrt{3}\left(a+b+c\right)\)bạn tự chứng minh nhá)  :))

Bình luận (0)
Vangull
Xem chi tiết
Lê Ng Hải Anh
22 tháng 5 2021 lúc 19:23

undefined

Bình luận (1)
Trần Minh Anh
Xem chi tiết
Akai Haruma
16 tháng 8 2017 lúc 10:41

Lời giải:

Vế đầu tiên:

Áp dụng BĐT AM-GM:

\(a^2+b^2\geq 2ab\Rightarrow 2(a^2+b^2)\geq (a+b)^2\Leftrightarrow a^2+b^2\geq \frac{(a+b)^2}{2}\)

Do đó, \(\sqrt{a^2+b^2}\geq \frac{a+b}{\sqrt{2}}\). Tương tự với các biểu thức còn lại và cộng theo vế:

\(\Rightarrow S\geq \sqrt{2}(a+b+c)\) (đpcm)

Dấu bằng xảy ra khi $a=b=c$

Vế sau:

Áp dụng BĐT Cauchy-Schwarz:

\(S^2\leq (1+1+1)(a^2+b^2+b^2+c^2+c^2+a^2)\)

\(\Leftrightarrow S^2\leq 6(a^2+b^2+c^2)\Leftrightarrow S\leq \sqrt{6(a^2+b^2+c^2)}\) \((1)\)

Ta sẽ cm \(\sqrt{6(a^2+b^2+c^2)}< \sqrt{3}(a+b+c)\)

\(\Leftrightarrow 2(a^2+b^2+c^2)\leq (a+b+c)^2\Leftrightarrow a^2+b^2+c^2\leq 2(ab+bc+ac)\)

\(\Leftrightarrow a(b+c-a)+b(c+a-b)+c(a+b-c)\geq 0\) (luôn đúng vì $a,b,c$ là độ dài ba cạnh tam giác)

Do đó \(\sqrt{6(a^2+b^2+c^2)}<\sqrt{3}(a+b+c)(2)\)

Từ \((1),(2)\Rightarrow S<\sqrt{3}(a+b+c)\)

Vậy ta có đpcm.

Bình luận (0)
Trần Đức
Xem chi tiết
Em Nhốc
Xem chi tiết

\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\ge\sqrt{2}\left(a+b+c\right)\)(1)

\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}< \sqrt{3}\left(a+b+c\right)\)(2)

Dễ thấy \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)nên  \(a+b\le\sqrt{2\left(a^2+b^2\right)}\)

Tương tự \(b+c\le\sqrt{2\left(b^2+c^2\right)}\)\(a+c\le\sqrt{2\left(a^2+c^2\right)}\)

\(\Rightarrow2\left(a+b+c\right)\le\sqrt{2}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\)

\(\Rightarrow\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)

Do \(a,b,c\)là ba cạnh của một tam giác nên 

\(\left(a-b\right)^2< c^2\Rightarrow a^2+b^2< c^2+2ab\Rightarrow\sqrt{a^2+b^2}< \sqrt{c^2+2ab}\)

Tương tự \(\sqrt{b^2+c^2}< \sqrt{a^2+2bc}\)\(\sqrt{a^2+c^2}< \sqrt{b^2+2ac}\)

Cộng vế theo vế ta được 

\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}< \sqrt{c^2+2ab}+\sqrt{a^2+2bc}+\sqrt{b^2+2ac}\)

Áp dụng BĐT \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\), ta có :

\(\sqrt{c^2+2ab}+\sqrt{a^2+2bc}+\sqrt{b^2+2ac}\le\sqrt{3\left(c^2+2ab+c^2+2bc+b^2+2ac\right)}\)

\(=\sqrt{3\left(a+b+c\right)^2}=\sqrt{3}\left(a+b+c\right)\)

P/s ko bt có đúng ko 

Bình luận (0)
kagamine rin len
Xem chi tiết
Vũ Trọng Nghĩa
20 tháng 8 2016 lúc 22:30

3, \(\sqrt{\frac{a}{b+c}}=\sqrt{\frac{a^2}{a\left(b+c\right)}}\Rightarrow\frac{1}{\sqrt{\frac{a}{b+c}}}=\sqrt{\frac{a\left(b+c\right)}{a^2}}.\)

Áp dụng bất đẳng thức Cô si ta có : \(\sqrt{\frac{a\left(b+c\right)}{a^2}}\le\frac{a+b+c}{2a}\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\left(1\right).\)

Chứng minh tương tự ta có : \(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\left(2\right).\);  \(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\left(3\right).\)

Cộng vế với vế các bất đẳng thức cùng chiều ta được: 

\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2.\)( đpcm )

dấu " = " xẩy ra khi a = b = c > 0

Bình luận (0)