Cho a, b, c không âm thỏa mãn a + b + c = 3
a. Chứng minh rằng \(\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\ge\sqrt{a^2+b^2+c^2+15}\)
b. Chứng minh rằng \(\sum\dfrac{a+1}{a^2+2a+3}\le1\)
Cho ba số thực dương a,b,c . Chứng minh : \(\dfrac{2+6a+3b+6\sqrt{2bc}}{2a+b+2\sqrt{2bc}}\) ≥ \(\dfrac{16}{\sqrt{2b^2+2\left(a+c\right)^2}+3}\)
Cho a,b,c dương thỏa mãn : \(a+b+c\le3\)
Tìm GTLN của biểu thức
\(B=\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}+2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
b / Cho a, b, c là 3 số hữu tỉ khác nhau đôi một
Chứng minh A= \(\sqrt{\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(b-c\right)^2}+\dfrac{1}{\left(c-a\right)^2}}\) là số hữu tỉ
Cho a,b,c là cái số thực dương thỏa mãn a + b + c = 1 . Tìm giá trị nhỏ nhất của biểu thức : Q = \(\dfrac{\left(1-c\right)^2}{\sqrt{2\left(b+c\right)^2+bc}}+\dfrac{\left(1-a\right)^2}{\sqrt{2\left(c+a\right)^2+ca}}\) + \(\dfrac{\left(1-b\right)^2}{\sqrt{2\left(a+b\right)^2+ab}}\)
cho 3 số dương a,b,c thảo mãn abc =1 . chứng minh
\(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\le\dfrac{1}{2}\)
Cho ba số dương a,b,c thỏa mãn abc = 1. Chứng minh rằng :
\(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\) ≤ \(\dfrac{1}{2}\)
Cho a,b,c>0 và a+b+c=căn a +căn b +căn c=2.Tính A=
\(\left(\dfrac{\sqrt{a}}{1+a}+\dfrac{\sqrt{b}}{1+b}+\dfrac{\sqrt{c}}{1+c}\right)\left(\sqrt{1+a}\right)\left(\sqrt{1+b}\right)\left(\sqrt{1+c}\right)\)
Cho a,b,c > 0 và \(a^2+b^2+c^2+abc\ge4\)
CMR: \(\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}\ge\dfrac{a}{\sqrt{2-a}}+\dfrac{b}{\sqrt{2-b}}+\dfrac{c}{\sqrt{2-c}}\)