Cho các số thực dương a,b,c thỏa mãn a+b+c=abc. Chứng minh
Cho a, b, c là các số thực dương thỏa mãn abc=a+b+c+2. Chứng minh rằng ab+bc+ca ≥ 2(a+b+c)
Cho các số thực dương a, b, c thỏa mãn a + b + c = 3. Chứng minh rằng abc (1 + a^2)(1 + b^2)(1 + c^2) ≤ 8
Cho các số thực dương a,b,c thỏa mãn a+b+c=3
Chứng minh rằng abc(1+a2)(1+b2)(1+c2)≤8
Cần gấp ko bạn
Nếu gấp thì sang web khác thử
Cho a,b,c là các số thực dương thỏa mãn: a+b+c = 1. Chứng minh :
\(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{abc}\ge30\)
Câu 1: Chứng minh \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{(n-1)n}\) với ∀n∈\(N^*\)
Câu 2: Cho a,b,c là các số thực dương. Chứng minh rằng: \(\frac{a^4+b^4+c^4}{a+b+c}\geq abc\).
Câu 3: Cho các số thực dương a,b,c thỏa mãn \(ab+bc+ca=3\). Chứng minh rằng: \(\sqrt{a^6+b^6+1}+\sqrt{b^6+c^6+1}+\sqrt{c^6+a^6+1}\geq 3\sqrt{3}\)
Câu 4: Cho các số thực không âm a,b,c thỏa mãn \(a+b+c=3\).Chứng minh rằng: \(a^3+b^3+c^3\geq 3\)
Câu 5: Với \(a,b,c>0\) thỏa mãn điều kiện \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=1\). Chứng minh rằng: \(\sqrt\frac{b}{a}+\sqrt\frac{c}{b}+\sqrt\frac{a}{c}\leq 1\)
1. Đề thiếu
2. BĐT cần chứng minh tương đương:
\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Ta có:
\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)
3.
Ta có:
\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)
\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)
\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)
Lại có:
\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)
\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)
4.
Ta có:
\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)
\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
5.
Ta có:
\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)
\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)
Câu 1:
\(VT=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)
\(VT=1-\dfrac{1}{n}< 1\) (đpcm)
Cho a,b,c à các số thực dương thỏa mãn abc=1. Chứng minh rằng
\(\dfrac{\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}}{abc}< \sqrt{2}\)
Helpppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
Help :(((((((((((((((((((((((((
Cho a,b,c à các số thực dương thỏa mãn abc=1. Chứng minh rằng
\(\dfrac{\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}}{abc}< \sqrt{2}\)
cho a b c là các số thực dương thỏa mãn ab+ac+bc=abc chứng minh rằng
Cho a,b,c à các số thực dương thỏa mãn abc=1. Chứng minh rằng
\(\dfrac{\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}}{abc}< \sqrt{2}\)
Help me
cho các số thực dương a,b,c thỏa mãn abc=1. chứng minh rằng a^3 +b^3+c^3+3>=4(a/b+c +b/c+a +c/a+b). giúp mình nhé
Vì abc=1 nên có: \(a^3+b^3+c^3+3=\frac{a^3+b^3+c^3}{abc}+3=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}\)
\(\ge\frac{4a^2}{\left(b+c\right)^2}+\frac{4b^2}{\left(c+a\right)^2}+\frac{4c^2}{\left(a+b\right)^2}+3\)(1)
Đặt: \(\frac{a}{b+c}=X;\frac{b}{c+a}=Y;\frac{c}{a+b}=Z\)
Ta có: \(4X^2+4Y^2+4Z^2+3-4X-4Y-4Z=\left(2X-1\right)^2+\left(2Y-1\right)^2+\left(2Z-1\right)^2\ge0\)
=> \(4Z^2+4Y^2+4Z^2+3\ge4X+4Y+4Z=4\left(X+Y+Z\right)\)
=> \(\frac{4a^2}{\left(b+c\right)^2}+\frac{4b^2}{\left(c+a\right)^2}+\frac{4c^2}{\left(a+b\right)^2}+3\ge4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
=> \(a^3+b^3+c^3+3\ge4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
"=" xảy ra <=> a =b =c =1.\(\)