Cho các số thực dương a,b,c thỏa mãn a+b+c=3
Chứng minh rằng abc(1+a2)(1+b2)(1+c2)≤8
Cho a,b,c là các số thực dương thỏa mãn abc = 1. Chứng minh rằng :
\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)
Cho a,b,c là các số thực dương thỏa mãn ab+ac+bc=abc . Chứng minh rằng :
\(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\ge3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
cho 3 số dương a b c thỏa mãn abc=1. chứng minh rằng:(a+b)(b+c)(c+a) > hoặc = 2(1+a+b+c)
cho a,b,c là 3 số dương thỏa mãn abc=1 chứng minh rằng(a+1)(b+1)(c+1)≥8
Cho các số thực dương a,b,c thỏa mãn a+b+c=3. Chứng minh rằng ∑\(\dfrac{1}{a+3b}\)≥ ∑\(\dfrac{1}{a+3}\)
cho các số thực dương a,b,c thỏa mãn a+b+c=3. Chứng minh rằng ∑\(\dfrac{1}{a+3b}\)≥ ∑\(\dfrac{1}{a+3}\)
cho các các số thực a b c thỏa mãn a^3-b^2-b=b^3-c^2-c=c^3-a^2-a=1/3.Chứng minh rằng a=b=c
Cho a, b, c là các số thực dương thỏa mãn \(2ab+6bc+2ac=7abc\) . Tim giá trị nhỏ nhất của biểu thức \(C=\frac{4ab}{a+2b}+\frac{9ac}{a+4c}+\frac{4bc}{b+c}\)
Cho a, b, c là ba số thực dương thỏa mãn: a+b+c = 3 . Chứng minh rằng:
\(\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\ge3\)