tìm gtln của : A = \(\sqrt{x}-x\)
Bài 1:
A=\(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
a) Tìm tập xác định của biểu thức A
b) Rút gọn biểu thức A
c) Chứng minh rằng A>0 với mọi x≠1
d) Tìm x để A đạt GTLN, tìm GTLN đó
a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b: Ta có: \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{2}{x+\sqrt{x}+1}\)
c: Ta có: \(x+\sqrt{x}+1>0\forall x\) thỏa mãn ĐKXĐ
\(\Leftrightarrow\dfrac{2}{x+\sqrt{x}+1}>0\forall x\)
Bài 1: Tìm GTNN và GTLN của \(A=123+\sqrt{-x^2+6x+5}\)
Bài 2:Tìm GTNN và GTLN của \(A=\sqrt{-x^2+8x-12}-7\)
Bài 3: Tìm GTNN và GTLN của \(A=\sqrt{-x^2-x+4}\)
Tìm GTLN của \(A=\sqrt{x-2}+2\sqrt{x+1}+2019-x\)
Xét \(2A=2\sqrt{x-2}+4\sqrt{x+1}+4038-2x\) (Đk:\(x\ge2\))
\(2A=-\left[\left(x-2\right)-2\sqrt{x-2}+1\right]-\left[\left(x+1\right)-4\sqrt{x+1}+2\right]+4042\)
\(2A=-\left(\sqrt{x-2}-1\right)^2-\left(\sqrt{x+1}-2\right)^2+4042\le4042\)
\(\Leftrightarrow A\le2021\)
\(\Rightarrow Amax=2021\) khi x=3 (tm)Tự đăng câu hỏi xong tự trả lời (T-T)
Tìm GTLN của:
\(A=\dfrac{-3\sqrt{x}}{\sqrt{x}+1}\)
Lời giải:
ĐKXĐ: $x\geq 0$
Với $x\geq 0$ thì $-3\sqrt{x}\leq 0; \sqrt{x}+1>0$. Do đó: $A=\frac{-3\sqrt{x}}{\sqrt{x}+1}\leq 0$
Vậy $A_{\max}=0$. Giá trị này xác định tại $x=0$
Tìm GTLN của: \(A=\dfrac{\sqrt{x}+1}{2\sqrt{x}+1}\)
\(A=\dfrac{2\sqrt{x}+1-\sqrt{x}}{2\sqrt{x}+1}=1-\dfrac{\sqrt{x}}{2\sqrt{x}+1}\)
Do \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\2\sqrt{x}+1>0\end{matrix}\right.\) \(\Rightarrow\dfrac{\sqrt{x}}{2\sqrt{x}+1}\ge0\)
\(\Rightarrow A\le1\)
\(A_{max}=1\) khi \(x=0\)
Tìm GTNN và GTLN của A=\(\sqrt{1-x}\)\(+\sqrt{1+x}\)
\(A^2=\left(\sqrt{1-x}+\sqrt{1+x}\right)^2\le\left(1^2+1^2\right)\left(1-x+1+x\right)=4\\ \Leftrightarrow A\le2\\ A_{max}=2\Leftrightarrow1-x=1+x\Leftrightarrow x=0\\ A^2=2+2\sqrt{1-x^2}\ge2\\ \Leftrightarrow A\ge\sqrt{2}\\ A_{min}=\sqrt{2}\Leftrightarrow1-x^2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy \(\sqrt{2}\le A\le2\)
Tìm GTNN , GTLN của biểu thức :
A=\(\sqrt{x+4}+\sqrt{6-x}\)
Lời giải:
Ta có:
$A^2=x+4+6-x+2\sqrt{(x+4)(6-x)}=10+2\sqrt{(x+4)(6-x)}\geq 10$
$\Rightarrow A\geq \sqrt{10}$ (do $A\geq 0$)
Vậy $A_{\min}=\sqrt{10}$. Giá trị này đạt được khi $(x+4)(6-x)=0\Leftrightarrow x=-4$ hoặc $x=6$
----------------------
Áp dụng BĐT Bunhiacopkxy:
$A^2\leq (x+4+6-x)(1+1)=10.2=20$
$\Rightarrow A\leq \sqrt{20}$
Vậy $A_{\max}=\sqrt{20}$
\(A=\dfrac{3x}{x\sqrt{x}+1}-\dfrac{\sqrt{x}-1}{x-\sqrt{x}+1}-\dfrac{1}{1+\sqrt{x}}\) với \(x\ge0\)
a) Rút gọn A
b) Tìm GTLN của A
a) \(A=\dfrac{3x}{x\sqrt{x}+1}-\dfrac{\sqrt{x}-1}{x-\sqrt{x}+1}-\dfrac{1}{1+\sqrt{x}}\)
\(=\dfrac{3x}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\dfrac{\sqrt{x}-1}{x-\sqrt{x}+1}-\dfrac{1}{1+\sqrt{x}}\)
\(=\dfrac{3x-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(\dfrac{x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)
Tìm GTLN của \(A=\dfrac{\sqrt{x-2}}{x}\)
Lời giải:
ĐKXĐ: $x\geq 2$
Áp dụng BĐT AM-GM:
\(\sqrt{x-2}\leq \frac{x-2+2}{2\sqrt{2}}=\frac{x}{2\sqrt{2}}\)
\(\Rightarrow A=\frac{\sqrt{x-2}}{x}\leq \frac{1}{2\sqrt{2}}\)
Vậy $A_{\max}=\frac{1}{2\sqrt{2}}$. Giá trị này đạt tại $x-2=2\Leftrightarrow x=4$
Tìm GTLN của biểu thức
a) \(A=\dfrac{1}{x-\sqrt{x}+2}\)
b) \(B=\dfrac{2x-2\sqrt{x}+5}{x-\sqrt{x}+2}\)