cho tam giác ABC vuong tai A AB=8Cm.AC=6cm.m trung diem bc
a)tinh bc va am
b)vẽ ah vuong goc bc,he vuong goc ab,hf vuong goc ac
cm tu giac aehf la hinh chu nhat
c)c/m goc hac=mab
d)c/m am vuong goc ef
giai gium voi :v :)))
cho tam giac vuong tai A va AB =6cm AC = 8cm , AH la duong cao
a, tinh BCva AH
b, ke HE vuong goc AB tai E , HF vuong goc AC tai F va goc D la trung diem cua BC .cm AD vuong goc EF
c, Goi M ,N lan luot la trung diem cua BH va CH . tu giac MNFE la hinh gi ? Vi sao ?
d, Tinh dien tich tu giac MNFE
Cho tam giac ABC vuong can voi day BC. Goi M va N lan luot la trung diem cua AB va AC. Ke NH vuong goc voi CM tai H, HE vuong goc voi AB tai E, AK vuong goc voi HM tai K.
a, Chung minh rang: AK = HC va H la trung diem cua KC
b, Cho AH = 4 cm. Tinh dien tich tam giac ABC
c, Chung minh rang HM la phan giac goc EHB
Bạn tự vẽ hình nhé
Xét các tam giác vuông AKM và tam giác vuông CHN có
AM=NC ( bằng 1 nửa đoạn AB=AC)
Góc MAK= góc NCH ( cùng phụ với AMC)
=> \(\Delta AKM=\Delta CHN\)( cạnh huyền - góc nhọn)
=> AK=HC ( 2 cạnh tương ứng)
Ta có NH//AK( quan hệ giữa tính vuông góc và song song) (1)
Có N là trung điểm của cạnh AC (2)
Từ (1) và (2) => NH là đường trung bình của \(\Delta ACK\)
=>H là trung điểm của KC
b) Theo câu a, ta có AK=HC và KH=HC
=>AK=HC
=> AK2+KH2=AH2
=>2.AK2=16
=>AK2=8
=>AK=KH=\(\sqrt{8}\)
=>KC=2.KH=2.\(\sqrt{8}\)=\(\sqrt{32}\)
Xét tam giác vuông AKC vuông tại K có AC2=AK2+KC2
=>AC2=8+32=40
=>\(AC=AB=\sqrt{40}\)
Diện tích tam giác ABC là
\(\frac{\sqrt{40}.\sqrt{40}}{2}=\frac{40}{2}=20\) cm2
Câu c hình như sai đề
Theo cau a ta co:
goc BAK = gocACH va AK = CH
Ta CM duoc tam giac BKA = Tam giac AHC ( c . g . c )
Suy ra goc DKA = goc AHC
Ma tam giac AKH vuong tai A
Suy ra goc AHK = 45 do
Suy ra goc AHC = 135 do ( ke bu )
Hay goc AKB = 135 do
Ta co goc AKH = 90 do Suy ra goc BKH = 135 do
Hay AKB = 135 do
Ta lai co goc AKH = 90 do Suy ra BKH = 35 do
Suy ra tam giac BKA = tam gic BKM
goc BHK = goc BAK
Do HE || AC ( cung vuong goc AB )
Suy ra goc EHM = goc ACH Va goc BAK = goc ACH
Suy ra BHK = MHE
HM la tia phan giac goc EHB
tam giac ABC co A=90 do , AB vuong goc voi BC AB = 6 , AC = 8 a) tinh BC , AH , goc B , goc C b) HE vuong goc voi AB , HF vuong goc voi AC , xđ dạng tứ giac AEHF . tinh SAEHF c) ve phan giac AD tinh BD va SAHD d) AE.AH = AF. AC
cho tam giac abc vuong tai A (AB<AC). Ke duong cao AH.
A) TAM GIAC AHB dong dang voi tam giac CAB
B) Tu H ke HE vuong goc voi AB(E THUOC AB). Ke HF vuong goc voi AC ( F thuoc AC) CM AE.AB=AF.AC
C) GOI M LA GIAO DIEM CUA EF VA BC. CM GOC MCE = GOC MFB
a: Xet ΔAHB vuôg tại H và ΔCAB vuông tại A có
góc B chung
=>ΔAHB đồng dạng với ΔCAB
b: Xét ΔAHB vuông tại H có HE là đường cao
nen AE*AB=AH^2
Xét ΔAHC vuông tạiH có HF là đường cao
nên AF*AC=AH^2
=>AE*AB=AF*AC
c: góc MEB=góc AEF=góc AHF=góc MCF
Xét ΔMEB và ΔMCF có
góc MEB=góc MCF
góc M chung
=>ΔMEB đồng dạng với ΔMCF
=>ME/MC=MB/MF
=>ME/MB=MC/MF
=>ΔMEC đồng dạng với ΔMBF
=>góc MCE=góc MFB
Cho tam giac ABC vuong can day BC. Goi M va N la trung diem cua AB va AC. Ke NH vuong goc voi CM, ke HE vuong goc voi AB, ke AK vuong goc voi HM.
a. CMR: AK=HC va H la trung diem cua KC
b. Cho AH= 4cm. Tinh dien tich tam giac ABC
c. CMR: HM la phan giac goc EHB
Cho tam giac ABC vuong tai A (AB>AC) co AM la duong trung tuyen. Ke MD vuong goc voi AC tai D, ME vuong goc voi AB tai E
a) Chung minh AM=DE
b) Lay N doi xung voi M qua AB. Chung minh tu giac ANBM la hinh thoi.
c) Goi O la trung diem cua AM. Chung minh N,O,C thang hang
d) Ke AH vuong goc voi BC tai H, cho AB=2AC. Chung minh AH=2HC
a: Xét tứ giác AEMD có
góc AEM=góc ADM=góc DAE=90 độ
nên AEMD là hình chữ nhật
b: Vì M đối xứng với N qua AB
nên ABvuông góc với MN tại E và E là trung điểm của MN
Xét tứ giác AMBN có
E là trung điểm chung của AB và MN
nên AMBN là hình bình hành
mà MA=MB
nên AMBN là hình thoi
c: Xét tứ giác ANMC có
NM//AC
NM=AC
Do đó: ANMC là hình bình hành
=>AM cắt CN tại trung điểm của mỗi đường
=>C,O,N thẳng hàg
Cho tam giac ABC vuong tai A co goc B = 60° .Ve AH vuong goc voi BC tai H A/Tinh goc HAB B/Tren canh AC lay D sao cho AD=AH .Goi I la trung diem cua canh HD. C/M tam giac AHI= tam giac ADI . Tu do suy ra AI vuong goc voi HD C/Tia AI cat canh HC tai diem K .C/M tam giac AHK=tam giac ADK.Tu do suy ra AB//KD D/Tren tia doi cua tia HA lay E sao cho HE=AH.C/M H la trung diem cua BK va 3 diem D,E,K thang hang
a: \(\widehat{HAB}=90^0-60^0=30^0\)
b: Xét ΔAHI và ΔADI có
AH=AD
HI=DI
AI chung
Do đó: ΔAHI=ΔADI
Ta có: ΔAHD cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
c: Xét ΔAHK và ΔADK có
AH=AD
\(\widehat{HAK}=\widehat{DAK}\)
AK chung
Do đó: ΔAHK=ΔADK
Suy ra: \(\widehat{AHK}=\widehat{ADK}=90^0\)
=>DK//AB
cho tam giac ABC vuong can tai A .ke AH vuong goc voi BC tai H,BD la phan giac goc B(D thuoc AC) tu D ke duong thang vuong goc BC cat BC tai E cat AB tai F.duong thang BD cat AH tai P,cat AE tai N a CM:CP la phan giac ACB b, so sanh DE va DF c,ke CM vuong goc AE tai M .CM:BN=AM
cho tam giac ABC co AB=AC Am la tia phan giac cua am thuoc bc ke mh vuong goc ab tai h mk vuong goc ac tai k chung minh m la trung diem cua bc chung minh am vuong goc bc tai m