△ABC nhọn nội tiếp (O,r),AB<AC . H là trung điểm BC.T2 tại B vs (O,r) cắt OH tại S,đgt SA cắt (O,r) tại D
a)CM:Tứ giác ADHO nt và \(\dfrac{AH}{CA}=\dfrac{DB}{Da}\)
b) kẻ đgt qua D//AB cắt SB tại E,cắt DC tại F. CM: D là tđ EF
GIÚP MÌNH VS CÁC BẠN
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O;R) (AB
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O;R) (AB<AC) 3 đường cao AD,BE,CF cắt nhau tại H
a,CM tứ giác BFEC nội tiếp và xác định tâm I
b,Đường thẳng EF cắt đường thẳng BC tại K . CM KF.KE=KB.KC
c,AK cắt (O) tại M. CM MFEA nội tiếp
jup mình vs ạ
Cho tam giác ABC có ba góc nhọn và AB>AC. Tam giác ABC nội tiếp đường tròn (O;R). Đường cao AH của tam giác ABC cắt đường tròn (O;R) tại điểm thứ hai là D. Kẻ DM vuông góc với AB tại M.
a) Chứng minh tứ giác BDHM nội tiếp đường tròn.
b) Chứng minh DA là tia phân giác của \(\widehat{MDC}\)
c) Gọi N là hình chiếu vuông góc của D lên đường thẳng AC, chứng minh ba điểm M, H, N thẳng hàng.
d) Chứng minh \(AB^2+AC^2+CD^2+BD^2=8R^2\)
a: góc BHD+góc BMD=180 độ
=>BHDM nội tiếp
b: BHDM nội tiếp
=>góc HDM+góc HBM=180 độ
=>góc ADM=góc ABC
=>góc ADM=góc ADC
=>DA là phân giáccủa góc MDC
c: Xét tứ giác DHNC có
góc DHC=góc DNC=90 độ
=>DHNC nội tiếp
=>góc NHD=góc NDC
góc NHD+góc MHD
=180 độ-góc NCD+góc MBD
=180 độ+180 độ-góc ABD-góc ACD
=180 độ
=>M,H,N thẳng hàng
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O bán kính R,AB=R\(\sqrt{3}\)
và AC=R\(\sqrt{2}\) .
Tính các góc của tam giác ABC.
Cho tam giác ABC nhọn ( AB < AC ) nội tiếp đường tròn (O;R) hai đường cao BE và CF của tam giác ABC cắt nhau tại H và cắt đường tròn (O) lần lượt tại y và x kẻ đường kính AK của (O;R) . Đường thẳng HK cắt (O;R)
tại P
a, c/m tứ giác AEHF nội tiếp
b, c/m PB . PE=PC.PE
Cho tam giác ABC nhọn nội tiếp (O;R) AB < AC, các đường cao BD, CE
a, Chứng minh BEDC nội tiếp
b, Qua A vẽ tiếp tuyến xy với (O). Chứng minh xy // ED
c, Chứng minh góc EBD = góc ECD
a) Xét tứ giác BEDC có:
ˆBEC=ˆBDCBEC^=BDC^
ˆBECBEC^và ˆBDCBDC^ cùng nhìn cạnh BC
=> BEDC là tứ giác nội tiếp
b) Do BEDC là tứ giác nội tiếp nên: ˆBED+ˆBCD=180oBED^+BCD^=180o
Mà ˆBED+ˆDEA=180o⇒ˆBCD=ˆDEABED^+DEA^=180o⇒BCD^=DEA^(*)
Mặt khác ta có:
ˆxAB=ˆACBxAB^=ACB^(cùng chắn cung AB)
hay ˆxAE=ˆBCDxAE^=BCD^(**)
Từ (*) và (**) suy ra ˆDEA=ˆxAEDEA^=xAE^
=> xy song song với ED (2 góc sole trong) (đpcm)
c) Do tứ giác BEDC là tứ giác nội tiếp
Mà ˆEBDEBD^và ˆECDECD^cùng nhìn cạnh ED
=> ˆEBD=ˆECDEBD^=ECD^(đpcm)
Cho tam giác ABC nhọn nội tiếp (O;R). Đường cao AD, BE, CF cắt nhau tại H. CMR : \(S_{ABC}=\dfrac{AB\cdot AC\cdot BC}{4R}\)
- Dựng đường kính AK của (O).
- △ACK nội tiếp đường tròn đường kính AK nên △ACK vuông tại C.
- Xét △AHB và △ACK có: \(\left\{{}\begin{matrix}\widehat{AHB}=\widehat{ACK}=90^0\\\widehat{ABH}=\widehat{AKC}\left(=\dfrac{1}{2}sđ\stackrel\frown{BC}\right)\end{matrix}\right.\)
\(\Rightarrow\Delta AHB\sim\Delta ACK\left(g-g\right)\)
\(\Rightarrow\dfrac{AH}{AC}=\dfrac{AB}{AK}\Rightarrow AH=\dfrac{AB.AC}{2R}\)
\(S_{ABC}=\dfrac{AH.BC}{2}=\dfrac{\dfrac{AB.AC}{2R}.BC}{2}=\dfrac{AB.AC.BC}{4R}\)
Cho tam giác ABC nhọn nội tiếp (O;R). Đường cao AD, BE, CF cắt nhau tại H. CMR : Nếu AD+BC=BE+AC=CF+AB thì tam giác ABC đều.
Cho △ ABC (AB<AC) có 3 góc nhọn nội tiếp (O;R) . H là giao điểm của 3 đường cao AD,BE,CF của △ ABC
a)c/m AEHF nội tiếp; AEDB là các tứ giác nội tiếp
b) vẽ đường kính AK của (O)
C/m AB.AC=AK.AD
c) Chứng minh : OC vuông DE
a, Xét tứ giác AEHF ta có
^AEH + ^AFH = 1800
mà 2 góc này đối
Vậy tứ giác AEHF là tứ giác nt 1 đường tròn
Xét tứ giác AEDB có
^AEB = ^ADB = 900
mà 2 góc này kề, cùng nhìn cạnh AB
Vậy tứ giác AEDB là tứ giác nt 1 đường tròn
b, ^ACK = 900 ( góc nt chắn nửa đường tròn )
Xét tam giác ABD và tam giác AKC có
^ABC = ^AKC (góc nt chắn cung AC)
^ADB = ^ACK = 900
Vậy tam giác ABD ~ tam giác AKC (g.g)
\(\dfrac{AB}{AK}=\dfrac{AD}{AC}\Rightarrow AB.AC=AD.AK\)
cho tam giác nhọn ABC nội tiếp ( O ; R ) AB,AC. 2 đường cao AD, BE cắt nhau tại H. Chứng minh OC vuông góc DE
Cho tam giác ABC có ba góc nhọn (AB < AC) nội tiếp đường tròn (O;R). Vẽ đường cao BE và CF cắt nhau tại H.
a) Chứng minh: Tứ giác AEHF nội tiếp đường tròn.
b) Chứng minh: AB . CE = CH . BE c) Chứng minh: OA ⊥ EF
a: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=180^0\)
nên AEHF là tứ giác nội tiếp
b: Xét ΔABE vuông tại E và ΔHCE vuông tại E có
\(\widehat{ABE}=\widehat{HCE}\)
Do đó: ΔABE\(\sim\)ΔHCE
Suy ra: AB/HC=BE/CE
hay \(AB\cdot CE=BE\cdot HC\)