Rút gọn \(\sqrt{14-8\sqrt{3}}\)
rút gọn biểu thức (3\(\sqrt{2}\)-\(\sqrt{8}+\sqrt{14}\))\(\sqrt{2}-\sqrt{7}\)
\(=\left(3\sqrt{2}-2\sqrt{2}+\sqrt{14}\right).\sqrt{2}-\sqrt{7}\\ =\left(\sqrt{2}+\sqrt{14}\right).\sqrt{2}-\sqrt{7}\\ =2+2\sqrt{7}-\sqrt{7}\\ =2+\sqrt{7}\)
rút gọn
\(\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}\)
\(\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\)
\(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}\)
\(\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\sqrt{\dfrac{3}{7}}\)
\(\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}=\sqrt{5}\)
\(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}=\dfrac{2\left(\sqrt{8}-\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{3}-\sqrt{8}\right)}=-\dfrac{2\sqrt{6}}{6}\)
`(sqrt 15 - sqrt 6)/(sqrt 35 - sqrt 14)`
`= (sqrt 3 . (sqrt 5 - sqrt 2))/(sqrt 7. (sqrt 5 - sqrt 2))`
`= sqrt3/sqrt 7`
`@ (sqrt 15 - sqrt 5)/(sqrt 3 - 1)`
`= (sqrt 5(sqrt 3 - 1))/(sqrt 3 - 1)`
`= sqrt5`
`@ (2 sqrt 8 - sqrt 12)/(sqrt18 - sqrt 48)`
`= (2(sqrt 8 - sqrt 3)/(sqrt 6(sqrt 3 - sqrt 8))`
`= (-2)/(sqrt 6) = (-2 sqrt 6)/6`
rút gọn các câu sau
a,\(2\sqrt{18}-4\sqrt{50}+3\sqrt{32}\)
b,\(\sqrt{\left(\sqrt{8}-4\right)^2}+\sqrt{8}\)
c,\(\sqrt{14-6\sqrt{5}}+\sqrt{6+2\sqrt{5}}\)
a) 2√18 - 4√50 + 3√32
= 6√2 - 20√2 + 12√2
= -2√2
b) √(√8 - 4)² + √8
= 4 - √8 + √8
= 4
c) √(14 - 6√5) + √(6 + 2√5)
= √(3 - √5)² + √(√5 + 1)²
= 3 - √5 + √5 + 1
= 4
\(a,2\sqrt{18}-4\sqrt{50}+3\sqrt{32}\\ =6\sqrt{2}-20\sqrt{2}+12\sqrt{2}=-2\sqrt{2}\\ b,\sqrt{\left(\sqrt{8}-4\right)^2}+\sqrt{8}\\ =4-\sqrt{8}+\sqrt{8}\\ =4\\ c,\sqrt{14-6\sqrt{5}}+\sqrt{6+2\sqrt{5}}\\ =\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}=3+\sqrt{5}+\sqrt{5}+1\\ =4+2\sqrt{5}\)
\(\sqrt{\dfrac{\left(2-\sqrt{5}\right)^2}{8}}\)
\(\dfrac{7}{3\sqrt[]{14}}\)
Hãy rút gọn 2 biểu thức trên
`\sqrt(((2-\sqrt5)^2)/8)`
`= (\sqrt((2-\sqrt5)^2))/(\sqrt8)`
`= (|2-\sqrt5|)/(2\sqrt2)`
`=(\sqrt5-2)/(2\sqrt2)`
`=(\sqrt10-2\sqrt2)/4`
.
`7/(3\sqrt14) = (\sqrt7 .\sqrt7)/(3.\sqrt7 .\sqrt2)`
`=(\sqrt7)/(3\sqrt2)`
`=(\sqrt14)/(3.2)`
`=(\sqrt14)/6`
\(\sqrt{\dfrac{\left(2−\sqrt{5}\right)^2}{8}}\)= \(\dfrac{\sqrt{5}-2}{2\sqrt{2}}\)
\(\dfrac{7}{3\sqrt{14}}\) = \(\dfrac{\sqrt{7}}{3\sqrt{2}}\)
\(\sqrt{\dfrac{\left(2-\sqrt{5}\right)^2}{8}}=\dfrac{\sqrt{5}-2}{2\sqrt{2}}=\dfrac{\sqrt{10}-2\sqrt{2}}{4}\)
\(\dfrac{7}{3\sqrt{14}}=\dfrac{7\sqrt{14}}{42}=\dfrac{\sqrt{14}}{6}\)
Rút gọn:
a/ \(\left(4+\sqrt{3}\right).\sqrt{19-8\sqrt{3}}\)
b/ \(\sqrt{14-6\sqrt{5}}-\sqrt{14+6\sqrt{5}}\)
rút gọn
\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}\)
giúp mink vs ạ
\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\cdot\sqrt{7}+7\sqrt{8}\)
\(=\left(3\sqrt{7}-2\sqrt{14}\right)\cdot\sqrt{7}+14\sqrt{2}\)
\(=21-14\sqrt{2}+14\sqrt{2}\)
=21
rút gọn
a) \(\sqrt{8+\sqrt{55}}-\sqrt{8-\sqrt{55}}-\sqrt{125}\)
b) \(\left(\sqrt{7-3\sqrt{5}}\right)\left(7+3\sqrt{5}\right)\left(3\sqrt{2}+\sqrt{10}\right)\)
c) \(\left(\sqrt{14}-\sqrt{10}\right)\left(6-\sqrt{35}\right)\left(\sqrt{6+\sqrt{35}}\right)\)
b: Ta có: \(\left(\sqrt{7-3\sqrt{5}}\right)\cdot\left(7+3\sqrt{5}\right)\cdot\left(3\sqrt{2}+\sqrt{10}\right)\)
\(=\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\left(7+3\sqrt{5}\right)\)
\(=4\left(7+3\sqrt{5}\right)\)
\(=28+12\sqrt{5}\)
Lời giải:
a.
$A=\sqrt{8+\sqrt{55}}-\sqrt{8-\sqrt{55}}-\sqrt{125}$
$\sqrt{2}A=\sqrt{16+2\sqrt{55}}-\sqrt{16-2\sqrt{55}}-\sqrt{250}$
$=\sqrt{(\sqrt{11}+\sqrt{5})^2}-\sqrt{(\sqrt{11}-\sqrt{5})^2}-5\sqrt{10}$
$=|\sqrt{11}+\sqrt{5}|-|\sqrt{11}-\sqrt{5}|-5\sqrt{10}$
$=2\sqrt{5}-5\sqrt{10}$
$\Rightarrow A=\sqrt{10}-5\sqrt{5}$
b.
$B=\sqrt{7-3\sqrt{5}}.(7+3\sqrt{5})(3\sqrt{2}+\sqrt{10})$
$B\sqrt{2}=\sqrt{14-6\sqrt{5}}(7+3\sqrt{5})(3\sqrt{2}+\sqrt{10})$
$=\sqrt{(3-\sqrt{5})^2}(7+3\sqrt{5}).\sqrt{2}(3+\sqrt{5})$
$=(3-\sqrt{5})(7\sqrt{2}+3\sqrt{10})(3+\sqrt{5})$
$=(3^2-5)(7\sqrt{2}+3\sqrt{10})$
$=4(7\sqrt{2}+3\sqrt{10})=28\sqrt{2}+12\sqrt{10}$
$\Rightarrow B=28+12\sqrt{5}$
c.
$C=\sqrt{2}(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{6+\sqrt{35}}$
$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{12+2\sqrt{35}}$
$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{(\sqrt{7}+\sqrt{5})^2}
$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})(\sqrt{7}+\sqrt{5})$
$=(7-5)(6-\sqrt{35})$
$=2(6-\sqrt{35})=12-2\sqrt{35}$
Rút gọn:
a)\(\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)
b)\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
a) \(\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}=\frac{\sqrt{6}+\sqrt{14}}{\sqrt{2}\left(\sqrt{6}+\sqrt{14}\right)}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}\)
b) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\sqrt{2}+1\)
Rút gọn:
a) \(\frac{\sqrt{6+\sqrt{14}}}{2\sqrt{3+\sqrt{28}}}\)
b) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\sqrt{2}\)