tìm phương trình đường thẳng y=ax+b đi qua A (0;1) và cắt trục hoành tại điểm có hoành độ là -2.
Giusp mình với
Viết phương trình đường thẳng y=ax+b biết đường thẳng đi qua A(-1;2) và vuông góc với đường thẳng x+2y-1=0
\(y=ax+b\left(d\right);y=-\dfrac{1}{2}x+\dfrac{1}{2}\left(d'\right)\)
\(\left(d\right)\perp\left(d'\right)\Leftrightarrow-\dfrac{1}{2}a=-1\Leftrightarrow a=2\Rightarrow y=2x+b\left(d\right)\)
Lại có \(\left(d\right)\) đi qua \(A\left(-1;2\right)\Rightarrow2=-2+b\Rightarrow b=4\)
\(\Rightarrow y=2x+4\left(d\right)\)
Bài 6. Trong hệ trục tọa độ Oxy, biết đường thẳng y = ax + b đi qua điểm A(2;3) và điểm B(-2;1) Tìm các hệ số a và b.
Bài 7. Viết phương trình đường thẳng (d) đi qua 2 điểm A(1; 2) và B(2; 0).
Bài 1: Cho parabol (P): y = 2x2.
1. Tìm giá trị của a,b sao cho đường thẳng y = ax+b tiếp xúc với (P) và đi qua A(0;-2).
2. Tìm phương trình đường thẳng tiếp xúc với (P) tại B(1;2).
3. Tìm giao điểm của (P) với đường thẳng y = 2m +1.
1, - Xét phương trình hoành độ giao điểm :\(2x^2=ax+b\)
\(\Rightarrow2x^2-ax-b=0\left(I\right)\)
Mà (P) tiếp xúc với d .
Nên PT ( I ) có duy nhất một nghiệm .
\(\Leftrightarrow\Delta=\left(-a\right)^2-4.2.\left(-b\right)=a^2+8b=0\)
Lại có : d đi qua A .
\(\Rightarrow b+0a=-2=b\)
\(\Rightarrow a=4\)
2. Tương tự a
3. - Xét phương trình hoành độ giao điểm :\(2x^2=2m+1\)
\(\Rightarrow2x^2-2m-1=0\)
Có : \(\Delta^,=\left(-m\right)^2-\left(-1\right).2=m^2+3\)
=> Giao điểm của P và d là : \(\left\{{}\begin{matrix}x_1=\dfrac{m+\sqrt{m^2+3}}{2}\\x_2=\dfrac{m-\sqrt{m^2+3}}{2}\end{matrix}\right.\)
Đường thẳng y=ax+b đi qua điểm M và song song với đường thẳng (d) có phương trình 2x+y=3. Tìm các hệ a,b
đường thẳng (d) : y = ax +b đi qua hai điểm A (-1;-2 ) và B ( 3;-1
Từ pt đường thẳng d tìm được, hãy tìm phương trình đường thẳng d’ song song với d ?
Lời giải:
Vì $A, B\in (d)$ nên:
\(\left\{\begin{matrix} y_A=ax_A+b\\ y_B=ax_B+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -2=-a+b\\ -1=3a+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=\frac{1}{4}\\ b=\frac{-7}{4}\end{matrix}\right.\)
Vậy PTĐT $(d)$ là: $y=\frac{1}{4}x-\frac{7}{4}$
PTĐT $(d')$ song song với $(d)$ có dạng: $y=\frac{1}{4}x+m$ với $m\neq \frac{-7}{4}$
Bài 1 :Giả sử đường thẳng (d) có phương trình y=ax+b . Xác định a,b để (d) đi qua hai điểm A(1;3) và B(-3;-1)
Bài 2 Cho hàm số y=x+m (d). Tìm các giá trị của m để đường thẳng (d)
1, Đi qua điểm A(1;2003)
2, Song song với đường thẳng x-y+3=0
lập phương trình đường thẳng y=ax+b (a khác 0) biết
a)(d) đi qua 2 điểm A(1;2) và B(4;5)
b)(d)đi qua điểm M(-2;1) và có hệ số góc là 2
a: Vì (d) đi qua A(1;2) và B(4;5) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=2\\4a+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=-3\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
a. Không sử dụng máy tính cầm tay, giải hệ phương trình $\left\{ \begin{aligned} & 4x - y = 7\\ & x + 3y = 5\\ \end{aligned}\right.$.
b. Cho đường thẳng $d:$ $y = ax + b$. Tìm giá trị của $a$ và $b$ sao cho đường thẳng $d$ đi qua điểm $A ( 0; -1)$ và song song với đường thẳng $\Delta :$ $y = x + 2019$.
a, \(\hept{\begin{cases}4x-y=7\\x+3y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=4x-7\left(1\right)\\x+3y=5\left(2\right)\end{cases}}\)
Thế (1) vào (2) ta được : \(x+3\left(4x-7\right)=5\Leftrightarrow x+12x-21=5\)
\(\Leftrightarrow13x=26\Leftrightarrow x=2\)
Theo (1) ta có : \(y=8-7=1\)
Vậy \(\left(x;y\right)=\left(2;1\right)\)
a, x = 2 , y = 1
b, a = 1 , b = -1
trong mặt phẳng tọa độ oxy cho hai đường thẳng (d1)2x-y+5=0 và (d2) x+y-3=0 cắt nhau tại i. phương trình đường thẳng đi qua m (-2;0) cắt d1, d2 tại a, b sao cho tam giác iab cân tại a có phương trình dạng ax+by+2=0. tính t=a-5b
Bài 8. Cho hàm số y=ax+b
a. Tìm a, b biết đường thẳng (d) đi qua A(2; -2) và song song với đường thẳng (d’) có phương trình y = 1 /2 x+1
b. Vẽ đồ thị hàm số với a, b tìm được.