Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hà Minh Nghĩa
Xem chi tiết
Akai Haruma
17 tháng 12 2021 lúc 23:45

Lời giải:
a. Gọi $d$ là ƯCLN $(n+2, n+3)$

$\Rightarrow n+2\vdots d, n+3\vdots d$

$\Rightarrow (n+3)-(n+2)\vdots d$ hay $1\vdots d$

$\Rightarrow d=1$
Vậy $ƯCLN(n+2, n+3)=1$ hay $n+2, n+3$ nguyên tố cùng nhau.

b.

Gọi $d$ là ƯCLN $(2n+3, 3n+5)$

$\Rightarrow 2n+3\vdots d$ và $3b+5\vdots d$

$\Rightarrow 2(3n+5)-3(2n+3)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $(2n+3,3n+5)=1$ nên 2 số này nguyên tố cùng nhau.

Phạm Đỗ Quyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 12 2023 lúc 7:37

a: Gọi d=ƯCLN(n+5;n+6)

=>\(\left\{{}\begin{matrix}n+5⋮d\\n+6⋮d\end{matrix}\right.\)

=>\(n+5-n-6⋮d\)

=>\(-1⋮d\)

=>d=1

=>ƯCLN(n+5;n+6)=1

=>n+5 và n+6 là hai số nguyên tố cùng nhau

b; Gọi d=ƯCLN(2n+3;3n+4)

=>\(\left\{{}\begin{matrix}2n+3⋮d\\3n+4⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6n+9⋮d\\6n+8⋮d\end{matrix}\right.\)

=>\(6n+9-6n-8⋮d\)

=>\(1⋮d\)

=>d=1

=>ƯCLN(2n+3;3n+4)=1

=>2n+3 và 3n+4 là hai số nguyên tố cùng nhau

c: Gọi d=ƯCLN(n+3;2n+7)

=>\(\left\{{}\begin{matrix}n+3⋮d\\2n+7⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2n+6⋮d\\2n+7⋮d\end{matrix}\right.\)

=>\(2n+6-2n-7⋮d\)

=>\(-1⋮d\)

=>d=1

=>ƯCLN(n+3;2n+7)=1

=>n+3 và 2n+7 là hai số nguyên tố cùng nhau

d: Gọi d=ƯCLN(3n+4;3n+7)

=>\(\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)

=>\(3n+4-3n-7⋮d\)

=>\(-3⋮d\)

mà 3n+4 không chia hết cho 3

nên d=1

=>ƯCLN(3n+4;3n+7)=1

=>3n+4 và 3n+7 là hai số nguyên tố cùng nhau

e: Gọi d=ƯCLN(2n+5;6n+17)

=>\(\left\{{}\begin{matrix}2n+5⋮d\\6n+17⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6n+15⋮d\\6n+17⋮d\end{matrix}\right.\)

=>\(6n+15-6n-17⋮d\)

=>\(-2⋮d\)

mà 2n+5 lẻ

nên d=1

=>ƯCLN(2n+5;6n+17)=1

=>2n+5 và 6n+17 là hai số nguyên tố cùng nhau

Hà Duy Trịnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 10 2021 lúc 20:01

a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)

Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau

Quân Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 12 2022 lúc 15:00

a: Gọi d=ƯCLN(n+3;n+2)

=>n+3-n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>n+2 và n+3 là hai số nguyên tố cùng nhau

b: Gọi d=ƯCLN(2n+3;3n+5)

=>6n+9-6n-10 chia hết cho d

=>-1 chia hết cho d

=>d=1

=>2n+3 và 3n+5là hai số nguyên tố cùng nhau

vũ thu hằng
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 1 2022 lúc 21:24

a: Gọi a là UCLN(3n+1;6n+3) 

\(\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮a\\6n+2⋮a\end{matrix}\right.\Leftrightarrow1⋮a\Leftrightarrow a=1\)

Vậy: 3n+1 và 6n+3 là hai số nguyên tố cùng nhau

b: Gọi a là UCLN(2n+1;6n+5)

\(\Leftrightarrow\left\{{}\begin{matrix}6n+5⋮a\\6n+3⋮a\end{matrix}\right.\Leftrightarrow2⋮a\)

mà 2n+1 là số lẻ

nên a=1

Vậy: 2n+1 và 6n+5 là hai số nguyên tố cùng nhau

Nguyễn Thị Ngọc Anh
3 tháng 1 2022 lúc 21:25

                                              Bài giải
 

a: Gọi a là UCLN(3n+1;6n+3) 

⇔⎧⎨⎩6n+3⋮a6n+2⋮a⇔1⋮a⇔a=1⇔{6n+3⋮a6n+2⋮a⇔1⋮a⇔a=1

Vậy: 3n+1 và 6n+3 là hai số nguyên tố cùng nhau

b: Gọi a là UCLN(2n+1;6n+5)

⇔⎧⎨⎩6n+5⋮a6n+3⋮a⇔2⋮a⇔{6n+5⋮a6n+3⋮a⇔2⋮a

mà 2n+1 là số lẻ

nên a=1

Vậy: 2n+1 và 6n+5 là hai số nguyên tố cùng nhau

Kim Seok Jin
Xem chi tiết
Vũ Thị Thanh
25 tháng 3 2021 lúc 19:48

đừng để anh nóng hơi mệt đấy

Khách vãng lai đã xóa
Con Ngốc Của Thế Kỷ
Xem chi tiết
Trịnh Ngọc Quang
16 tháng 11 2015 lúc 21:24

Gọi ước chung lớn nhất của 3n+6 và 6n+13 là a ( a thuộc N)

Ta có :

3n+6 chia hết cho a và 6n +13 chia hết cho a

nên 6n+12 chia hết cho a

nên 6n+13 - 6n-12 chia hết cho a hay 1chia hết cho a

nên a =1

    Vậy ............................ 

𝓐𝓼𝓾𝓷𝓪
Xem chi tiết
𝓐𝓼𝓾𝓷𝓪
30 tháng 7 2021 lúc 16:24

cùng nhau  ko phải bằng nhau

Nguyen Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 10 2021 lúc 22:45

b: Vì 2n+3 là số lẻ

mà 4n+8 là số chẵn

nên 2n+3 và 4n+8 là hai số nguyên tố cùng nhau