Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Khoa Nguyên
Xem chi tiết
Nguyễn Văn Tuấn Anh
1 tháng 9 2019 lúc 22:56

a) 

Ta có:

\(\left(\sqrt{26}+\sqrt{5}\right)^2=26+2\sqrt{26}\sqrt{5}+5\)

\(=31+2\sqrt{130}\)(1)

Mặt khác: \(\left(\sqrt{7}\right)^2=7\) (2)

Từ (1) và (2) =>\(\sqrt{26}+\sqrt{5}>\sqrt{7}\)

ミ★kͥ-yͣeͫt★彡
13 tháng 9 2019 lúc 17:52

a) \(\sqrt{26}+\sqrt{5}< \sqrt{25}+\sqrt{4}=5+2=7\)

b) \(\sqrt{8}+\sqrt{24}< \sqrt{9}+\sqrt{25}=3+5=8\)

\(\sqrt{65}>\sqrt{64}=8\)

\(\Rightarrow\sqrt{8}+\sqrt{24}< \sqrt{65}\)

Mera Do
Xem chi tiết
Nguyễn Đức Trí
3 tháng 8 2023 lúc 17:25

\(A=\sqrt[]{50}+\sqrt[]{65}\Rightarrow A^2=50+65+2\sqrt[]{50.65}=115+2\sqrt[]{5.10.5.13=}115+10\sqrt[]{130}\left(1\right)\)

\(B=\sqrt[]{15}+\sqrt[]{115}\Rightarrow B^2=15+115+2\sqrt[]{15.115}=15+115+2\sqrt[]{3.5.5.23}=15+115+10\sqrt[]{69}\left(2\right)\)Ta có  \(10\sqrt[]{130}< 10\sqrt[]{69.2}=10\sqrt[]{2}\sqrt[]{69}< 15+10\sqrt[]{69}\left(3\right)\)

\(\left(1\right),\left(2\right),\left(3\right)\Rightarrow A^2< B^2\Rightarrow A< B\)

\(\Rightarrow\sqrt[]{50}+\sqrt[]{65}< \sqrt[]{15}+\sqrt[]{115}\)

So sánh gì thế em, em nhập đủ đề vào hi

vu thanh tung
Xem chi tiết
Nguyễn Lê Thành Vinh Thi...
13 tháng 12 2017 lúc 9:44

ta thấy \(\sqrt{65}>\sqrt{64}\Leftrightarrow\sqrt{65}-1>\sqrt{64}-1\)

mà ta có \(\sqrt{64}-1=8-1=4+3=\sqrt{16}+\sqrt{9}\)

lại có \(\sqrt{16}>\sqrt{15};\sqrt{9}>\sqrt{8}\Leftrightarrow\sqrt{16}+\sqrt{9}>\sqrt{15}+\sqrt{8}\)

Vậy \(\sqrt{8}+\sqrt{15}< \sqrt{65}-1\)

Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 10 2021 lúc 13:50

e: \(2\sqrt{26}>9\)

nên \(2\sqrt{26}+4>13\)

Law Trafargal
Xem chi tiết
ST
11 tháng 11 2018 lúc 15:10

\(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)

\(\sqrt{65}-1>\sqrt{64}-1=8-1=7\)

Vậy \(\sqrt{8}+\sqrt{15}< \sqrt{65}-1\)

%Hz@
Xem chi tiết
NGUYEN VAN NHANH
28 tháng 2 2020 lúc 13:58

theo ket qua cho thay:9.4594<10

Khách vãng lai đã xóa
Vũ Đình Thái
28 tháng 2 2020 lúc 13:59

Ta có :

\(\sqrt{3}< \sqrt{4}=2\)

\(\sqrt{8}< \sqrt{9}=3\)

\(\sqrt{24}< \sqrt{25}=5\)

\(\Rightarrow\sqrt{3}+\sqrt{8}+\sqrt{24}< 2+3+5=10\)(đpcm)

Vậy ...

Khách vãng lai đã xóa
KCLH Kedokatoji
28 tháng 2 2020 lúc 14:00

\(\sqrt{3}+\sqrt{8}+\sqrt{24}< \sqrt{4}+\sqrt{9}+\sqrt{25}\)

\(=2+3+5=10\)

Vậy: \(\sqrt{3}+\sqrt{8}+\sqrt{24}< 10\)

Khách vãng lai đã xóa
Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 8 2023 lúc 23:12

a: \(\sqrt[3]{-8}\cdot\sqrt[3]{27}=-2\cdot3=-6\)

\(\sqrt[3]{\left(-8\right)\cdot27}=\sqrt[3]{-216}=-6\)

Do đó: \(\sqrt[3]{-8}\cdot\sqrt[3]{27}=\sqrt[3]{\left(-8\right)\cdot27}\)

b: \(\dfrac{\sqrt[3]{-8}}{\sqrt[3]{27}}=-\dfrac{2}{3}\)

\(\sqrt[3]{-\dfrac{8}{27}}=-\dfrac{2}{3}\)

Do đó: \(\dfrac{\sqrt[3]{-8}}{\sqrt[3]{27}}=\sqrt[3]{-\dfrac{8}{27}}\)

☆Nu◈Pa◈Kachi
Xem chi tiết
Thanh Tùng DZ
5 tháng 6 2019 lúc 15:10

a) \(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)

\(\sqrt{65}-1>\sqrt{64}-1=8-1=7\)

\(\Rightarrow\sqrt{8}+\sqrt{15}< \sqrt{65}-1\)

b) \(\frac{13-2\sqrt{3}}{6}>\frac{13-2\sqrt{4}}{6}=1,5\)

mà 1,52 = 2,25 ; \(\sqrt{2}^2=2\)

\(\Rightarrow1,5>\sqrt{2}\)hay \(\frac{13-2\sqrt{3}}{6}>\sqrt{2}\)

Nguyễn Thị Minh Thư
Xem chi tiết
Trên con đường thành côn...
20 tháng 8 2021 lúc 18:36

undefined

Nguyễn Lê Phước Thịnh
20 tháng 8 2021 lúc 21:10

\(\left(\sqrt{24}+\sqrt{26}\right)^2=50+8\sqrt{39}\)

\(10^2=100=50+50\)

mà \(8\sqrt{39}< 50\)

nên \(\sqrt{24}+\sqrt{26}< 10\)

Trang Nguyễn
Xem chi tiết
Akai Haruma
18 tháng 11 2021 lúc 18:19

Lời giải:

a.

$\sqrt{8}+\sqrt{15}+1<\sqrt{9}+\sqrt{16}+1=3+4+1=8=\sqrt{64}< \sqrt{65}$

$\Rightarrow \sqrt{8}+\sqrt{15}< \sqrt{65}-1$
b.

$(2\sqrt{3}+6\sqrt{2})^2=84+24\sqrt{6}< 84+24\sqrt{9}< 169$

$\Rightarrow 2\sqrt{3}+6\sqrt{2}< 13$

$\Rightarrow \frac{13-2\sqrt{3}}{6}> \sqrt{2}$