Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Thu Trang
Xem chi tiết
Bảo Anh Nguyễn Dương
Xem chi tiết
alibaba nguyễn
19 tháng 5 2017 lúc 15:03

Bấm nhầm nút gửi

\(A=2x+\sqrt{5-x^2}\)

\(\Leftrightarrow A-2x=\sqrt{5-x^2}\)

Điều kiện

\(\hept{\begin{cases}5-x^2\ge0\\A-2x\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-\sqrt{5}\le x\le\sqrt{5}\\A\ge2x\end{cases}}\)

\(\Rightarrow A\ge-2\sqrt{5}\) (1)

Bình phương 2 vế ta được

\(5x^2-4Ax+A^2-5=0\)

Để phương trình theo x có nghiệm thì 

\(\Delta'=\left(2A\right)^2-4.\left(A^2-5\right).5\ge0\)

\(\Leftrightarrow100-16A^2\ge0\)

\(\Leftrightarrow A\le\frac{5}{2}\)(2)

Từ (1) và (2)  \(\Rightarrow-2\sqrt{5}\le A\le\frac{5}{2}\)

alibaba nguyễn
19 tháng 5 2017 lúc 14:50

\(A=2x+\sqrt{5-x^2}\)

\(\Leftrightarrow A-2x=\sqrt{5-x^2}\)

Điều kiện

\(\hept{\begin{cases}5-x^2\ge0\\A-2x\ge0\end{cases}}\)

Nguyễn Huy Trường Lưu
Xem chi tiết
Akai Haruma
3 tháng 2 lúc 19:03

Lời giải:

Ta thấy $(x+1)^2\geq 0$ với mọi $x$

$\Rightarrow 2(x+1)^2\geq 0$

$\Rightarrow 2(x+1)^2-3\geq 0-3=-3$

Vậy GTNN của biểu thức là $-3$. Giá trị này đạt được tại $x+1=0$

$\Leftrightarrow x=-1$

---------------------------

$(2x-1)^2\geq 0$ với mọi $x$

$\Rightarrow 4-(2x-1)^2\leq 4-0=4$
Vậy GTLN của biểu thức là $4$. Giá trị này đạt được tại $2x-1=0$

$\Leftrightarrow x=\frac{1}{2}$

Đỗ Hoàng Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 6 2023 lúc 22:59

a: a(x)=x^3+3x^2+5x-18

b(x)=-x^3-3x^2+2x-2

b: m(x)=a(x)+b(x)

=x^3+3x^2+5x-18-x^3-3x^2+2x-2

=7x-20

c: m(x)=0

=>7x-20=0

=>x=20/7

Hoàng Thu Trang
Xem chi tiết
Không Tên
24 tháng 3 2017 lúc 21:30

b)

\(-x^2+3x-2=-\left(x+\dfrac{3}{-2}\right)^2+\dfrac{3.\left(-1\right).\left(-2\right)-9}{2.\left(-2\right)}\\ =-\left(x+\dfrac{3}{-2}\right)^2+\dfrac{1}{4}\)

\(-\left(x+\dfrac{3}{-2}\right)^2\le0\) nên

\(-\left(x+\dfrac{3}{-2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

vậy MAXA = 0,25 tại x=1,5

hà nguyễn
Xem chi tiết
ILoveMath
4 tháng 3 2022 lúc 7:10

\(a,P\left(x\right)=2x^3-3x+7-x=2x^3-4x+7\\ Q\left(x\right)=-5x^3+2x-3+2x-x^2-2=-5x^3-x^2+4x-5\)

\(M\left(x\right)=2x^3-4x+7+\left(-5x\right)^3-x^2+4x-5=-3x^3-x^2+2\)

\(N\left(x\right)=2x^3-4x+7-\left(-5x\right)^3+x^2-4x+5=7x^3+x^2-8x+12\)

b,\(M\left(x\right)=-3x^3-x^2+2=0\)

Nghiệm xấu lắm bạn

Trang Le Thi Huyen
Xem chi tiết
Đồng Bằng Việt
Xem chi tiết
nguyễn thị vọng
20 tháng 3 2017 lúc 12:03

không có nghiệm 

Đinh Đức Hùng
20 tháng 3 2017 lúc 12:13

\(2x^2-4x+5=2\left(x^2-2x+\frac{5}{2}\right)=2\left[\left(x^2-2x+1\right)+\frac{3}{2}\right]=2\left[\left(x-1\right)^2+\frac{3}{2}\right]=2\left(x-1\right)^2+3\ge3\)

\(\Rightarrow x\in\phi\)

123654
Xem chi tiết
Trần Huỳnh Thanh Long
4 tháng 9 2017 lúc 21:15

Đặt \(\sqrt{x-4}=t\left(t\ge0\right)\Rightarrow x=t^2+4\)Khi đó \(A=\frac{t}{2t^2+8}\Rightarrow2At^2-t+8A=0\)

\(\Delta=1-64A^2\). Pt có nghiêm<=> \(\Delta\ge0\)\(\Leftrightarrow\)\(1-64A^2\ge0\)\(\Leftrightarrow\)\(A^2\le\frac{1}{64}\)\(\Leftrightarrow\)\(-\frac{1}{8}\le A\le\frac{1}{8}\)

Do đó \(MinA=\frac{-1}{8}\)khi \(t=\frac{-\left(-1\right)-\sqrt{\Delta}}{2.2A}=\frac{1-\sqrt{1-64.\left(-\frac{1}{8}\right)^2}}{4.\left(-\frac{1}{8}\right)}=-2\)(loại)

          \(MaxA=\frac{1}{8}khi\\ t=\frac{-\left(-1\right)-\sqrt{\Delta}}{2.2A}=\frac{1-\sqrt{1-64.\left(\frac{1}{8}\right)^2}}{4.\frac{1}{8}}=2\)(thỏa)

\(\Rightarrow\sqrt{x-4}=2\Rightarrow x=8\)

Vậy MaxA=1/8 khi x=8

vũ tiền châu
4 tháng 9 2017 lúc 21:16

min trước nhé max mình đang nghĩ 

ta có 

ĐKXĐ \(x>=4\)

vì x>=4 => 2x>0 và \(\sqrt{x-4}>=0\)

=> \(\frac{\sqrt{x-4}}{2x}>=0\)

dấu = xảy ra <=> x=4

vũ tiền châu
4 tháng 9 2017 lúc 21:31

min của bạn long sai rồi A>=0 mà 

t acùng tìm max = cách khác nhé 

ta có \(A=\frac{\sqrt{x-4}}{2x}=\frac{4.\sqrt{x-4}}{8x}=\frac{x-\left(x-4\right)+4\sqrt{x-4}-4}{8x}\)

            \(=\frac{1}{8}-\frac{\left(\sqrt{x-4}-2\right)^2}{8x}\)

đến đây thì dễ rồi nhé A max=1/8<=> x=8