1/x^2+5x+6 + 1/x^2+7x+12 + 1/x^2+9x+20 + 1/x^2+11x+30 = 1/8
giải giúp toy vs=)))
thk u :))
GIẢI PT:
(1/x^2-5x+6)+(!/x^2-7x+12)+(1/x^2-9x+20)+(1/x^2-11x+30)=1/8
Đk:\(x\ne2;x\ne3;x\ne4;x\ne5;x\ne6\)
\(pt\Leftrightarrow\frac{1}{\left(x-6\right)\left(x-5\right)}+\frac{1}{\left(x-5\right)\left(x-4\right)}+...+\frac{1}{\left(x-3\right)\left(x-2\right)}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x-6}-\frac{1}{x-5}+\frac{1}{x-5}-\frac{1}{x-4}+\frac{1}{x-4}+...+\frac{1}{x-3}-\frac{1}{x-2}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x-6}-\frac{1}{x-2}=\frac{1}{8}\)\(\Leftrightarrow\frac{x-2}{\left(x-6\right)\left(x-2\right)}-\frac{x-6}{\left(x-2\right)\left(x-6\right)}=\frac{1}{8}\)
\(\Leftrightarrow\frac{4}{\left(x-6\right)\left(x-2\right)}=\frac{1}{8}\Leftrightarrow\left(x-2\right)\left(x-6\right)=32\)
\(\Leftrightarrow x^2-8x+12=32\Leftrightarrow x^2-8x-20=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+2\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=10\\x=-2\end{cases}}\)
giải phương trình
(1/x^2+5x+6)+(1/x^2+7x+12)+(1/x^2+9x+20)+(1/x^2+11x+30)= 1/8
\(\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}=\frac{1}{x+2}-\frac{1}{\left(x+6\right)}\)
\(\frac{1}{t}-\frac{1}{t+4}=\frac{4}{t\left(t+4\right)}=\frac{1}{8}=\frac{4}{32}\Rightarrow t=4\Rightarrow x=2\)
BT: giải
\(\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2-9x+20}+\dfrac{1}{x^2-11x+30}=\dfrac{1}{8}\)
\(\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2-9x+20}+\dfrac{1}{x^2-11x+30}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}+\dfrac{1}{\left(x-5\right)\left(x-6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x-2}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-4}+\dfrac{1}{x-4}-\dfrac{1}{x-5}+\dfrac{1}{x-5}-\dfrac{1}{x-6}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x-2}-\dfrac{1}{x-6}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{x-6-x+2}{\left(x-2\right)\left(x-6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{4}{\left(x-2\right)\left(x-6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow32=\left(x-2\right)\left(x-6\right)\)
\(\Leftrightarrow32=x^2-8x+12\)
\(\Leftrightarrow x^2+8x-20=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=10\end{matrix}\right.\)
\(\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2-9x+12}+\dfrac{1}{x^2-11x+30}=\dfrac{1}{8}\)giải pt
Giúp tui với
\(\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2-9x+20}+\dfrac{1}{x^2-11x+30}=\dfrac{1}{8}\)
ĐKXĐ: x khác 2;3;4;5;6
\(\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2-11x+30}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}+\dfrac{1}{\left(x-5\right)\left(x-6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x-2}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-4}+\dfrac{1}{x-4}-\dfrac{1}{x-5}+\dfrac{1}{x-5}-\dfrac{1}{x-6}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x-6}-\dfrac{1}{x-2}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{x+6-x+2}{\left(x-2\right)\left(x-6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{4}{\left(x-2\right)\left(x-6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow32=x^2-8x+12\)
\(\Leftrightarrow x^2+8x-20=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=10\end{matrix}\right.\)
\(\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+3}+....+\frac{1}{x+5}-\frac{1}{x+6}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+6}=\frac{1}{8}\)
\(\Leftrightarrow\frac{4}{\left(x+2\right)\left(x+6\right)}=\frac{4}{32}\)
\(\Rightarrow x^2+8x+12=32\)
\(\Leftrightarrow x^2+8x-20=0\)
Đến đây đơn giản rồi nhé
\(\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}=0\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+6}=0\)
\(\Leftrightarrow\frac{1}{x+2}=\frac{1}{x+6}\)
\(\Leftrightarrow x+6=x+2\)
\(\Leftrightarrow x-x=2-6\)
\(\Leftrightarrow0x=-4\)
=> PT vô nghiệm
@ Harley @ ơi sai rồi, phải quy đồng như bạn Vân Nhi chứ không thể rút tử như thế
Giải phương trình :(1/x^2+3x+2)+(1/x^2+5x+6)+(1/x^2+7x+12)+(1/x^2+9x+20)+1(/x^2+11x+30)+(1/x^2+13x+41)=1/2
\(\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{\left(x+2\right)}+\frac{1}{\left(x+2\right)}-\frac{1}{\left(x+3\right)}+\frac{1}{\left(x+3\right)}-...-\frac{1}{x+6}+\frac{1}{\left(x+6\right)}-\frac{1}{\left(x+7\right)}=\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+7}=\frac{1}{2}\Leftrightarrow\frac{6}{\left(x+1\right)\left(x+7\right)}=\frac{1}{2}\)\(\Leftrightarrow x^2+8x+7=12\Leftrightarrow\left(x+4\right)^2-21=0\Leftrightarrow\left(x+4-\sqrt{21}\right)\left(x+4+\sqrt{21}\right)=0\Rightarrow\left[{}\begin{matrix}x=-4+\sqrt{21}\\x=-4-\sqrt{21}\end{matrix}\right.\)
\(\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+41}=\frac{1}{2}\) Giải hộ mik vs ,mik đang cần gấp!!
Sửa đề: x2 + 13x + 41 --> x2 + 13x + 42
Giải:
\(\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+41}=\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{2}\)
(ĐKXĐ: \(x\ne\left\{-1;-2;-3;-4;-5;-6;-7\right\}\))
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+7}=\frac{1}{2}\)
\(\Leftrightarrow\frac{x+7-x-1}{\left(x+1\right)\left(x+7\right)}=\frac{1}{2}\)
\(\Leftrightarrow\left(x+1\right)\left(x+7\right)=12\)
\(\Leftrightarrow x^2+8x+7=12\)
⇔x2-8x=5
⇔ x2-8x+(-4)2=5+(-4)2
⇔ x2-8x+16=21
⇔ (x-4)2=21
⇔ x=±21+4
Vậy...
Chúc bạn học tốt@@
vabh ơi cho mk hỏi bạn có ghi sai đề k ạ?
sr mik viết sai đề 42 ko phải 41
Rút gon: \(\frac{1}{x^2-5x+6}+\frac{1}{x^2-7x+12}+\frac{1}{x^2-9x+20}+\frac{1}{x^2-11x+30}\)
Ta có:\(\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}+\frac{1}{\left(x-5\right)\left(x-6\right)}\)
\(=\frac{1}{x-2}-\frac{1}{x-3}+\frac{1}{x-3}-\frac{1}{x-4}+\frac{1}{x-4}-\frac{1}{x-5}+\frac{1}{x-5}-\frac{1}{x-6}\)
\(=\frac{1}{x-2}-\frac{1}{x-6}\)
\(=\frac{\left(x-6\right)-\left(x-2\right)}{\left(x-2\right)\left(x-6\right)}\)
\(=\frac{4}{\left(x-2\right)\left(x-6\right)}\)