giải hệ phương trình 4x-3y=6 và 3y+4x=10
Giải các hệ phương trình sau:
c.{3x + y = 10
4x - 3y = 9
d.{4x + 3y = 22
5x + 3y = 26
e.{4x - 3y = 5
5x + 3y = 13
\(c,\left\{{}\begin{matrix}3x+y=10\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+3y=30\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13x=39\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\\ d,\left\{{}\begin{matrix}4x+3y=22\\5x+3y=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\5x+3y=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\\ e,\left\{{}\begin{matrix}4x-3y=5\\5x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x=18\\5x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
c: \(\left\{{}\begin{matrix}3x+y=10\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12x+4y=40\\12x-9y=27\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}13y=13\\3x+y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=3\end{matrix}\right.\)
d: \(\left\{{}\begin{matrix}4x+3y=22\\5x+3y=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x=-4\\4x+3y=22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\dfrac{22-4x}{3}=\dfrac{22-4\cdot4}{3}=2\end{matrix}\right.\)
c. \(\left\{{}\begin{matrix}3x+y=10\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+3y=30\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13x=39\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
d. \(\left\{{}\begin{matrix}4x+3y=22\\5x+3y=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\4x+3y=22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\)
e. \(\left\{{}\begin{matrix}4x-3y=5\\5x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x=18\\4x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Giải các hệ phương trình sau:
a.|3x - y = 5
|4x + 2y = 10
b.|5x + 2y = 9
|x + 5y = 11
c.|3x + y = 10
|4x - 3y = 9
d.|4x + 3y = 22
|5x + 3y = 26
e.|4x - 3y = 5
|5x + 3y = 13
Giải các hệ phương trình sau:
a.{3x - y = 5
4x + 2y = 10
b.{5x + 2y = 9
x + 5y = 11
c.{3x + y = 10
4x - 3y = 9
d.{4x + 3y = 22
5x + 3y = 26
e.{4x - 3y = 5
5x + 3y = 13
\(a,\left\{{}\begin{matrix}3x-y=5\\4x+2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=5\\2x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\ b,\left\{{}\begin{matrix}5x+2y=9\\x+5y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+2y=9\\5x+25y=55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+2y=9\\23y=46\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(c,\left\{{}\begin{matrix}3x+y=10\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+3y=30\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13x=39\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\\ d,\left\{{}\begin{matrix}4x+3y=22\\5x+3y=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\5x+3y=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\)
\(e,\left\{{}\begin{matrix}4x-3y=5\\5x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x=18\\5x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
a. \(\left\{{}\begin{matrix}3x-y=5\\4x+2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-2y=10\\4x+2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10x=20\\6x-2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}5x+2y=9\\x+5y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+2y=9\\5x+25y=55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}23y=46\\5x+2y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)
c. \(\left\{{}\begin{matrix}3x+y=10\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+3y=30\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13x=39\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
d. \(\left\{{}\begin{matrix}4x+3y=22\\5x+3y=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\4x+3y=22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\)
e. \(\left\{{}\begin{matrix}4x-3y=5\\5x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x=18\\4x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
a) \(\begin{cases} 3x -y=5\\ 4x +2y=10 \end{cases} \)
\(\begin{cases} 12x - 4y= 20\\ 12x +6y= 30 \end{cases} \)
\(\begin{cases} -10y=-10\\ 3x-y=5 \end{cases} \)
\(\begin{cases} y=1\\ 3x-1=5 \end{cases} \)
\(\begin{cases} y=1\\ 3x=6 \end{cases} \)
\(\begin{cases} y=1\\ x=2 \end{cases} \)
Hpt có nghiệm duy nhất: {1;2}
b)\(\begin{cases} 5x +2y=9\\ x+5y=11 \end{cases} \)
\(\begin{cases} 5x+2y=9\\ 5x+25y=55 \end{cases} \)
\(\begin{cases} -23y=-46\\ x+5y=11 \end{cases} \)
\(\begin{cases} y=2\\ x+ 5*2=11 \end{cases} \)
\(\begin{cases} y=2\\ x+10=11 \end{cases} \)
Hpt có nghiệm duy nhất:{1;2}
c)\(\begin{cases} 3x+y=10\\ 4x-3y=9 \end{cases} \)
\(\begin{cases} 12x+4y=40\\ 12x-9y=27 \end{cases} \)
\(\begin{cases} 13y=13\\ 3x+y=10 \end{cases} \)
\(\begin{cases} y=1\\ 3x+1=10 \end{cases} \)
\(\begin{cases} y=1\\ 3x=9 \end{cases} \)
hpt có nghiệm duy nhất:{1;3}
d)\(\begin{cases} 4x+3y=22\\ 5x+3y=26 \end{cases} \)
\(\begin{cases} 20x+15y=110\\ 20x+12y=104 \end{cases} \)
\(\begin{cases} 3y=6\\ 4x+3y=22 \end{cases} \)
\(\begin{cases} y=2\\ 4x+3*2=22 \end{cases} \)
\(\begin{cases} y=2\\ 4x+6=22 \end{cases} \)
hệ phương trình có nghiệm duy nhất:{2;4}
e)\(\begin{cases} 4x-3y=5\\ 5x+3y=13 \end{cases} \)
\(\begin{cases} 20x-15y=25\\ 20x+12y=52 \end{cases} \)
\(\begin{cases} -27y=-27\\ 4x-3y=5 \end{cases} \)
\(\begin{cases} y=1\\ 4x-3*1=5 \end{cases} \)
\(\begin{cases} y=1\\ 4x-3=5 \end{cases} \)
Hệ phương trình có nghiệm duy nhất là:{1;2}
Giải các hệ phương trình sau:
a.|3x - y = 5
|4x + 2y = 10
b.|5x + 2y = 9
|x + 5y = 11
c.|3x + y = 10
|4x - 3y = 9
d.|4x + 3y = 22
|5x + 3y = 26
e.|4x - 3y = 5
|5x
giải các hệ phương trình
9x-6y=4 và 3(4x-3y)=-3x+y+7
3(x+1)+2y=-x và 5(x+y)=-3x+y-5
2(2x+3y)=3(2x-3y)+10 và 4x-3y=4(6y-2x)+3
Cho hệ phương trình {4x-3y=6
{-5x+ay=8
a) Giải hệ phương trình với a=3
b) Tìm a để hệ phương trình có nghiệm âm duy nhất
a) Thay a=3 vào hệ pt, ta được:
\(\left\{{}\begin{matrix}4x-3y=6\\-5x+3y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x=14\\4x-3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-14\\-56-3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-14\\-3y=62\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-14\\y=-\dfrac{62}{3}\end{matrix}\right.\)
Vậy: Khi a=3 thì hệ pt có nghiệm duy nhất là: \(\left(x,y\right)=\left(-14;-\dfrac{62}{3}\right)\)
a. với a=3 ta có hpt: {4x-3y=6 {-5x+3y=8
<=> {-x=14 <=> {x=-14 {-5x+3y=8 {x= -62/3
Giải các hệ phương trình sau:
.{4x + 7y = 16
{4x - 3y = -24
\(\left\{{}\begin{matrix}4x+7y=16\\4x-3y=-24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10y=40\\4x-3y=-24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=\dfrac{-24+3y}{4}=\dfrac{-24+12}{4}=-\dfrac{12}{4}=-3\end{matrix}\right.\)
Giải hệ phương trình 2x+3y=7 và 4x-y=7
ta có 2x+3y=7(1) => 4x+6y=14( nhân đôi 2 vế)
=> 4x+6y-(4x-y)=14-7
=> 4x+6y-4x+y=7
=> 6y+y=7
=> 7y=7 =>y=1
thay vào (1) ta có 2x+3.1=7 =>2x=4 => x=2
chúc bạn học tốt. ủng hộ mik nha