Tính nhanh:\((\) \(\dfrac{1}{3}\)-\(\dfrac{1}{5}\)-\(\dfrac{1}{10}\)-\(\dfrac{1}{30}\))x(\(\dfrac{1}{21}\)+\(\dfrac{1}{210}\)+\(\dfrac{1}{2010}\))
Tính nhanh
a, S= \(\dfrac{1}{3}\) + \(\dfrac{1}{15}\) + \(\dfrac{1}{35}\) + \(\dfrac{1}{63}\) + \(\dfrac{1}{99}\) + \(\dfrac{1}{143}\)
b, A = \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + \(\dfrac{1}{15}\) + \(\dfrac{1}{21}\) + \(\dfrac{1}{28}\)
c, H =\(\dfrac{4047991-2010x2009}{4050000-2011x2009}\)
d, T = \(\dfrac{2009x20010+2000}{2011x2010-2020}\)
e, P = \(\dfrac{7589-80,5x69,3}{7485,05-79x69,3}\)
f, B = 5,1 x 42,2 + 1,7 x 448 x 3 - 0,15 x 700
Giúp mình với
a=78/35
b=22/12
c=1/1
d=40202090/4040090
e=1,24025667172...
f=871,82
ko biết đúng ko [0_0'] hihi
1)3-(x+\(\dfrac{5}{7}\))=\(\dfrac{9}{21}\)
2)\(\dfrac{x}{2}\)+\(\dfrac{x}{5}\)=\(\dfrac{17}{10}\)
3)\(\dfrac{1}{2}\)x+\(\dfrac{1}{3}\)-1=3\(\dfrac{1}{3}\)
`a, 3-(x+5/7 )=9/21`
`=>x+5/7= 3-9/21`
`=>x+5/7= 63/21-9/21`
`=>x+5/7= 54/21`
`=>x= 54/21-5/7`
`=>x= 54/21 - 15/21`
`=>x= 39/21`
`=>x= 13/7`
`b, x/2+ x/5 = 17/10`
`=> (5x)/10 + (2x)/10=17/10`
`=> 7x/10=17/10`
`=> 7x.10=10.17`
`=>7x.10=170`
`=>7x=170:10`
`=>7x=17`
`=>x=17/7`
`c, 1/2x + 1/3 -1= 3 1/3`
`=> 1/2x + 1/3 -1= 10/3`
`=> 1/2x + 1/3=10/3+1`
`=> 1/2x + 1/3=10/3 + 3/3`
`=> 1/2x + 1/3=13/3`
`=>1/2 x= 13/3 -1/3`
`=> 1/2x= 12/3`
`=> 1/2x= 4`
`=>x= 4 :1/2`
`=>x= 4 xx 2`
`=>x=8`
\(a,3-\left(x+\dfrac{5}{7}\right)=\dfrac{9}{21}\\ x+\dfrac{5}{7}=3-\dfrac{9}{21}\\ x+\dfrac{5}{7}=\dfrac{18}{7}\\ x=\dfrac{18}{7}-\dfrac{5}{7}\\ x=\dfrac{13}{7}\\ b,\dfrac{x}{2}+\dfrac{x}{5}=\dfrac{17}{10}\\ \dfrac{5x}{10}+\dfrac{2x}{10}=\dfrac{17}{10}\\ \dfrac{7x}{10}=\dfrac{17}{10}\\ 7x=17\\ x=\dfrac{17}{7}\\ c,\dfrac{1}{2}x+\dfrac{1}{3}-1=3\dfrac{1}{3}\\ \dfrac{1}{2}x+\dfrac{1}{3}-1=\dfrac{10}{3}\\ \dfrac{1}{2}x+\dfrac{1}{3}=\dfrac{10}{3}+1\\ \dfrac{1}{2}x+\dfrac{1}{3}=\dfrac{13}{3}\\ \dfrac{1}{2}x=\dfrac{13}{3}-\dfrac{1}{3}\\ \dfrac{1}{2}x=4\\ x=4:\dfrac{1}{2}\\ x=10\)
Thực hiện phép tính ( tính nhanh nếu có thể )
a, -5/21 + -2/21 + 8/24
b, 4/11 . -2/7 + 4/11 . -4/7 + 4/11 . -1/7
c, \(10\dfrac{5}{9}\) - ( \(3\dfrac{5}{7}\) + \(4\dfrac{5}{9}\) )
d, 1/3 + \(1\dfrac{3}{4}\) - ( \(1\dfrac{3}{4}\) - 80% )
e, \(5\dfrac{3}{5}\) + \(7\dfrac{21}{48}\) : 10/7 - \(5\dfrac{21}{48}\) : 10/7
f, -5/7 . 2/11 - 5/11 . 9/7 + \(2\dfrac{5}{7}\)
g, -3/13 . 6/8 + 7/13 . -3/8 + \(1\dfrac{3}{8}\)
a: =-1/3+1/3=0
b: \(=\dfrac{4}{11}\left(-\dfrac{2}{7}-\dfrac{4}{7}-\dfrac{1}{7}\right)=\dfrac{4}{11}\cdot\left(-1\right)=-\dfrac{4}{11}\)
c: \(=10+\dfrac{5}{9}-3-\dfrac{5}{7}-4-\dfrac{5}{9}=3-\dfrac{5}{7}=\dfrac{16}{7}\)
d: \(=\dfrac{1}{3}+\dfrac{7}{4}-\dfrac{7}{4}+\dfrac{4}{5}=\dfrac{1}{3}+\dfrac{4}{5}=\dfrac{5+12}{15}=\dfrac{17}{15}\)
a: =-1/3+1/3=0
b: =10+59−3−57−4−59=3−57=167=10+59−3−57−4−59=3−57=167
d:
12+3/7-11+3/7 tính bằng cách thuận tiện nhé
Tìm x :
a) \(\dfrac{5}{3}+1\dfrac{1}{3}< x< 3\dfrac{1}{5}+1\dfrac{8}{10}\)
b) \(\dfrac{-1}{4}+\dfrac{1}{3}:2x=-5\)
c) \(\dfrac{-3}{2}x+\dfrac{6}{7}=\dfrac{10}{3}\)
d) \(\dfrac{1}{3}+\dfrac{3}{35}< \dfrac{x}{210}< \dfrac{4}{7}+\dfrac{1}{3}\)
a: \(\Leftrightarrow\dfrac{5}{3}+\dfrac{4}{3}< x< 3+\dfrac{1}{5}+1+\dfrac{4}{5}\)
=>3<x<5
=>x=4
b: \(\Leftrightarrow\dfrac{1}{3}:2x=-5+\dfrac{1}{4}=-\dfrac{19}{4}\)
=>\(2x=\dfrac{1}{3}:\dfrac{-19}{4}=\dfrac{1}{3}\cdot\dfrac{-4}{19}=\dfrac{-4}{57}\)
=>x=-2/57
c: \(\Leftrightarrow x\cdot\dfrac{-3}{2}=\dfrac{10}{3}-\dfrac{6}{7}=\dfrac{70-18}{21}=\dfrac{52}{21}\)
=>\(x=\dfrac{-52}{21}:\dfrac{3}{2}=\dfrac{-52}{21}\cdot\dfrac{2}{3}=\dfrac{-104}{63}\)
d: \(\Leftrightarrow70+18< x< 120+70\)
=>88<x<190
hay \(x\in\left\{89;90;...;188;189\right\}\)
Tìm x : \(\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+....+\dfrac{2}{x.\left(x+1\right)}=\dfrac{2010}{2012}\)
\(\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{2}{x.\left(x+1\right)}=\dfrac{2010}{2012}\)
\(\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{x.\left(x+1\right)}=\dfrac{2010}{2012}\)
\(\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{x.\left(x+1\right)}=\dfrac{2010}{2012}\)
\(2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{x.\left(x+1\right)}\right)=\dfrac{2010}{2012}\)
\(2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{\left(x+1\right)}\right)=\dfrac{2010}{2012}\)
\(2\left(\dfrac{1}{4}-\dfrac{1}{\left(x+1\right)}\right)=\dfrac{2010}{2012}\)
\(\dfrac{1}{4}-\dfrac{1}{\left(x+1\right)}=\dfrac{2010}{2012}:2\)
\(\dfrac{1}{4}-\dfrac{1}{\left(x+1\right)}=\dfrac{1005}{2012}\)
\(\Rightarrow\dfrac{1}{\left(x+1\right)}=\dfrac{1}{4}-\dfrac{1005}{2012}\)
\(\dfrac{1}{\left(x+1\right)}=\dfrac{-251}{1006}\)
\(\Rightarrow1:\left(x+1\right)=\dfrac{-251}{1006}\)
\(\left(x+1\right)=1:\dfrac{-251}{1006}\)
\(x+1=\dfrac{-1006}{251}\)
\(x=\dfrac{-1006}{251}-1\)
\(x=\dfrac{-1257}{251}\)
Nếu bạn tìm \(x\in Z\) hay \(x\in N\) thì \(x=\varnothing\) (không có x thoả mãn)
Bài 6 tính
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)
\(F=\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+...+\dfrac{1}{190}\)
\(G=\dfrac{12}{84}+\dfrac{12}{210}+\dfrac{12}{390}+...+\dfrac{12}{210}\)
+) \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)
\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)
\(\Rightarrow2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\right)\)
\(\Rightarrow A=1-\dfrac{1}{2^{10}}=\dfrac{2^{10}-1}{2^{10}}\)
Vậy \(A=\dfrac{2^{10}-1}{2^{10}}\)
+) \(F=\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+...+\dfrac{1}{190}\)
\(\Rightarrow\dfrac{1}{2}F=\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+...+\dfrac{1}{380}\)
\(=\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{19.20}=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{19}-\dfrac{1}{20}\)
\(=\dfrac{1}{5}-\dfrac{1}{20}=\dfrac{3}{20}\Rightarrow F=\dfrac{3}{20}:\dfrac{1}{2}=\dfrac{3}{10}\)
Vậy \(F=\dfrac{3}{10}\)
+) \(G=\dfrac{12}{84}+\dfrac{12}{210}+\dfrac{12}{390}+...+\dfrac{12}{2100}\)
\(=\dfrac{4}{28}+\dfrac{4}{70}+\dfrac{4}{130}+...+\dfrac{4}{700}=\dfrac{4}{4.7}+\dfrac{4}{7.10}+...+\dfrac{4}{25.28}\)
\(=\dfrac{4}{3}.\left(\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{25.28}\right)\)
\(=\dfrac{4}{3}.\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)
\(=\dfrac{4}{3}.\left(\dfrac{1}{4}-\dfrac{1}{28}\right)=\dfrac{4}{3}.\dfrac{3}{14}=\dfrac{2}{7}\)
Vậy \(G=\dfrac{2}{7}\)
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)
\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)
\(2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\right)\)
\(A=1-\dfrac{1}{2^{10}}=\dfrac{1024-1}{1024}=\dfrac{1023}{1024}\)
\(F=\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+...+\dfrac{1}{190}\)
\(=\dfrac{2}{30}+\dfrac{2}{42}+\dfrac{2}{56}+...+\dfrac{2}{380}\)
\(=\dfrac{2}{5.6}+\dfrac{2}{6.7}+\dfrac{2}{7.8}+...+\dfrac{2}{19.20}\)
\(=2\left(\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{19.20}\right)\)
\(=2\left(\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{19}-\dfrac{1}{20}\right)\)
\(=2\left(\dfrac{1}{5}-\dfrac{1}{20}\right)=2.\dfrac{3}{20}=\dfrac{3}{10}\)
\(G=\dfrac{12}{84}+\dfrac{12}{210}+\dfrac{12}{390}+...+\dfrac{12}{2100}\)
\(=\dfrac{4}{28}+\dfrac{4}{70}+\dfrac{4}{130}+...+\dfrac{4}{700}\)
\(=\dfrac{4}{4.7}+\dfrac{4}{7.10}+\dfrac{4}{10.13}+...+\dfrac{4}{25.28}\)
\(=\dfrac{4}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)
\(=\dfrac{4}{3}\left(\dfrac{1}{4}-\dfrac{1}{28}\right)\)
\(=\dfrac{4}{3}.\dfrac{3}{14}=\dfrac{2}{7}\)
Chọn câu trả lời đúng \(\left(2x+\dfrac{1}{5}\right)\left(-\dfrac{3}{5}x+\dfrac{4}{7}\right)=0\) thì:
A. x = \(\dfrac{-1}{10}\) hoặc x = \(\dfrac{20}{21}\)
B. x = \(\dfrac{20}{21}\)
C. x = \(-\dfrac{1}{10}\)
D. x = \(-\dfrac{20}{21}\)
GIÚP MÌNH VỚI
a, x - \(\dfrac{5}{7}\)=\(\dfrac{19}{21}\)
b,\(\dfrac{5}{3}\)-I x - \(\dfrac{1}{5}\)I = \(\dfrac{1}{3}\)
c, (x - \(\dfrac{2}{5}\)) = \(\dfrac{1}{4}\)
d, 5\(\sqrt{x}\) - 30 = 15
\(a,x-\dfrac{5}{7}=\dfrac{19}{21}\\ x=\dfrac{34}{21}\\ b,\dfrac{5}{3}-\left|x-\dfrac{1}{5}\right|=\dfrac{1}{3}\\ \left|x-\dfrac{1}{5}\right|=\dfrac{4}{3}\\ TH1:x-\dfrac{1}{5}=\dfrac{4}{3}\\ x=\dfrac{23}{15}\\ TH2:x-\dfrac{1}{5}=-\dfrac{4}{3}\\ x=-\dfrac{17}{15}\\ c,x-\dfrac{2}{5}=\dfrac{1}{4}\\ x=\dfrac{13}{20}\\ d,5\sqrt{x}-30=15\\ 5\sqrt{x}=45\\ \sqrt{x}=9\\ x=9^2=81\)
Tìm số tự nhiên x, biết rằng:
\(\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{2}{x.\left(x+1\right)}=\dfrac{2010}{2012}\)
\(\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{2}{x.\left(x+1\right)}=\dfrac{2010}{2012}\)
\(\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{x.\left(x+1\right)}=\dfrac{2010}{2012}\)
\(2\left(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+...+\dfrac{1}{x.\left(x+1\right)}\right)=\dfrac{2010}{2012}\)
\(2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{x.\left(x+1\right)}\right)=\dfrac{2010}{2012}\)
\(2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{\left(x+1\right)}\right)=\dfrac{2010}{2012}\)
\(2\left(\dfrac{1}{4}-\dfrac{1}{\left(x+1\right)}\right)=\dfrac{2010}{2012}\)
\(\dfrac{1}{4}-\dfrac{1}{\left(x+1\right)}=\dfrac{2010}{2012}:2\)
\(\dfrac{1}{4}-\dfrac{1}{\left(x+1\right)}=\dfrac{1005}{2012}\)
\(\dfrac{1}{\left(x+1\right)}=\dfrac{1}{4}-\dfrac{1005}{2012}\)
\(\dfrac{1}{\left(x+1\right)}=\dfrac{-251}{1006}\)
\(\Rightarrow1:\left(x+1\right)=\dfrac{-251}{1006}\)
\(\left(x+1\right)=1:\dfrac{-251}{1006}\)
\(x+1=\dfrac{-1006}{251}\)
\(x=\dfrac{-1006}{251}-1\)
\(x=\dfrac{-1257}{251}\)
Vì \(x\in N\) nên \(x=\varnothing\) (không có giá trị nào của x thoả mãn)
Ta có :
\(\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+.........+\dfrac{2}{x\left(x+1\right)}=\dfrac{2010}{2012}\)
\(\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+..........+\dfrac{2}{x\left(x+1\right)}=\dfrac{2010}{2012}\)
\(\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{7.8}+.......+\dfrac{2}{x\left(x+1\right)}=\dfrac{2010}{2012}\)
\(2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{7.8}+...........+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2010}{2012}\)
\(2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+.........+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2010}{2012}\)
\(2\left(\dfrac{1}{4}-\dfrac{1}{x+1}\right)=\dfrac{2010}{2012}\)
\(\dfrac{1}{4}-\dfrac{1}{x+1}=\dfrac{2010}{2012}:2\)
\(\dfrac{1}{4}-\dfrac{1}{x+1}=\dfrac{1005}{2012}\)
\(\dfrac{1}{x+1}=\dfrac{1}{4}-\dfrac{1005}{2012}\)
\(\dfrac{1}{x+1}=\dfrac{-215}{1006}\)
\(\Rightarrow1.1006=\left(x+1\right).\left(-215\right)\)
\(1006=\left(x+1\right).\left(-215\right)\)
\(x+1=1006:\left(-215\right)\)
\(x+1=\dfrac{-1006}{215}\)
\(x=\dfrac{-1006}{215}-1\)
\(x=\dfrac{-1221}{215}\)(ko thỏa mãn \(x\in N\))
Vậy ko tìm dc giá trị của x thỏa mãn theo yêu cầu
~ Học tốt ~