tìm Min F biết F=\(\frac{4\cdot\sqrt{x}+15}{2\cdot\sqrt{x}+9}\)
Giải các phương trình sau
a) \(-x^2+4\cdot x+1=2\cdot\sqrt{2\cdot x+1}\)
b) \(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=2\)
c) \(5\cdot x^2-2\cdot x+1=\left(4\cdot x-1\right)\cdot\sqrt{x^2+1}\)
d) \(\left(2\cdot x-1\right)\cdot\sqrt{10-4\cdot x^2}=5-2\cdot x\)
e) \(\sqrt{2\cdot x-1}-\sqrt{x+1}=2\cdot x-4\)
f) \(\sqrt{x^2-2\cdot x}+\sqrt{2\cdot x^2+4\cdot x}=2\cdot x\)
câu b đk x>= -1/4
\(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=2\)
\(x+\sqrt{\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2}=2\)
\(\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2=2\)
\(x+\dfrac{1}{4}=\left(\sqrt{2}-\dfrac{1}{2}\right)^2\)
\(x=\left(\sqrt{2}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)
\(x=\left(\sqrt{2}-\dfrac{1}{2}-\dfrac{1}{2}\right)\left(\sqrt{2}-\dfrac{1}{2}+\dfrac{1}{2}\right)\)
\(x=\sqrt{2}\left(\sqrt{2}-1\right)=2-\sqrt{2}\)
Tìm x biết
\(a,\sqrt{1,69\cdot\left(2\cdot x+\sqrt{\frac{81}{121}}\right)=\frac{13}{10}}\)
\(b,2\cdot x^7=3^9\)
\(c,x^6=4\cdot x\)
Chứng minh biểu thức không thuộc x
\(K=\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}\cdot\sqrt[6]{7+4\sqrt{3}}-x}{\sqrt[4]{9-4\sqrt{5}\cdot\sqrt{2+\sqrt{5}}+x}}\)
\(\frac{2\cdot x^4-5\cdot x^3+2\cdot x^2-5\cdot x-30}{x^2+10\cdot x-15}\) với x=\(-\sqrt{5}\)
Chứng minh biểu thức không phụ thuộc vào x
\(K=\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}\cdot\sqrt[6]{7+4\sqrt{3}}-x}{\sqrt[4]{9-4\sqrt{5}}\cdot\sqrt{2+\sqrt{5}}+\sqrt{x}}\)
\(\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{\left(\sqrt{3}+2\right)^2}-x}{\sqrt[4]{\left(\sqrt{5}-2\right)^2}.\sqrt{\sqrt{5}+2}+\sqrt{x}}\\ =\sqrt{x}+\frac{1-x}{1+\sqrt{x}}=\sqrt{x}+1-\sqrt{x}=1\)
Giải phương trình:
a)\(\sqrt[3]{14-x^3}+x=2\cdot\left(1+\sqrt{x^2-2x-1}\right)\)
b) \(5-3x=\left(-125x^2+150x-41\right)\cdot\sqrt{1-x^2}\)
c)\(\sqrt{2x^2+1}+\sqrt{x^2+3x+2}=\sqrt{x^2-x+4}+\sqrt{2x^2+2x+3}\)
d) \(\sqrt{x^2+15}+2=\sqrt{x^2+8}+3x\)
e) \(\sqrt{2x^4+2}\cdot\left(\sqrt{2-x}-\sqrt{x}\right)=\left(1-x\right)\cdot\left(x^2+1\right)\)
f) \(\sqrt[3]{2037-x}-\sqrt{x-2009}=x^2-2009x-2008\)
giải bài nào hộ mk cx được ko cần lm hết đâu :) :) :)
cho đa thức \(f\left(x\right)=4\cdot x^2+3x+1\); \(g\left(x\right)=3x^2-2x+1\); \(k\left(x\right)=7\cdot x^2-35x+42\)
a) tính f(x)-g(x)=h(x)
b) tính nghiệm của h(x) và k(x)
c) tìm gia trị của đa thức h(x) biết:
\(\left(x^2-9\right)^{2021}=\left(\frac{3}{4}-81\right)\cdot\left(\frac{3^2}{5}-81\right)^2\cdot\left(\frac{3^2}{6}-81\right)^3\cdot\cdot\cdot\left(\frac{3^{2020}}{2023}-81\right)^{2020}\)
a, Ta có : \(f\left(x\right)-g\left(x\right)=h\left(x\right)\)hay
\(4x^2+3x+1-3x^2+2x-1=h\left(x\right)\)
\(\Rightarrow h\left(x\right)=x^2+5x\)
b, Đặt \(h\left(x\right)=x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy nghiệm của đa thức h(x) là x = -5 ; x = 0
Đặt \(k\left(x\right)=7x^2-35x+42=0\)
\(\Leftrightarrow7\left(x^2+5x+6\right)=0\)
\(\Leftrightarrow7\left(x^2+2x+3x+6\right)=0\Leftrightarrow7\left(x+2\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}\)
Vậy nghiệm của đa thức k(x) là x = -3 ; x = -2
xin lỗi mọi người 1 tý nha cái phần c) ý ạ đề thì vậy như thế nhưng có cái ở phần biểu thức ở dưới ý là
\(\left(\frac{3^2}{6}-81\right)^3\) chuyển thành \(\left(\frac{3^3}{6}81\right)^3\)
bị sai mỗi thế thôi ạ mọi người giúp em với ạ
là \(\left(\frac{3^3}{6}-81\right)^3\)ạ
1. Rút gọn \(A=\sqrt{x+\sqrt{2x-1}}-\sqrt{x-\sqrt{2x-1}}\)
2. Tính \(B=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}\)
3.Tính \(C=\frac{\sqrt{3-\sqrt{5}}\cdot\left(\sqrt{10}-\sqrt{2}\right)\cdot\left(3+\sqrt{5}\right)}{\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}}\)
Bài 2:
Ta có: \(B=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}\)
\(=\frac{\sqrt{\sqrt{5}-1}\left(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}\right)}{2}-\sqrt{2-2\cdot\sqrt{2}\cdot1+1}\)
\(=\frac{\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}}{2}-\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(=\frac{\sqrt{6+2\sqrt{5}}+\sqrt{14-6\sqrt{5}}}{2\sqrt{2}}-\left(\sqrt{2}-1\right)\)
\(=\frac{\sqrt{5}+1+3-\sqrt{5}}{2\sqrt{2}}-\sqrt{2}+1\)
\(=\frac{4}{2\sqrt{2}}-\sqrt{2}+1\)
\(=\sqrt{2}-\sqrt{2}+1\)
=1
câu 1. đkxđ: \(x\ge\frac{1}{2}\)
\(A\sqrt{2}=\sqrt{2x+2\sqrt{2x-1}}-\sqrt{2x-2\sqrt{2x-1}}\)
\(=\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1-2\sqrt{2x-1}+1}\)
\(=\sqrt{\left(\sqrt{2x-1}+1\right)^2}-\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)
\(=\sqrt{2x-1}+1-\left|\sqrt{2x-1}-1\right|\)
nếu \(\left|\sqrt{2x-1}-1\right|=\sqrt{2x-1}-1\) với \(\sqrt{2x-1}\ge1\Leftrightarrow x\ge1\)
thì \(A\sqrt{2}=\sqrt{2x-1}+1-\sqrt{2x-1}+1=2\)
=> A=\(\sqrt{2}\)
nếu \(\left|\sqrt{2x-1}-1\right|=1-\sqrt{2x-1}\) với \(\frac{1}{2}\le x< 1\)
thì \(A\sqrt{2}=\sqrt{2x-1}+1-1+\sqrt{2x-1}=2\sqrt{2x-1}\)
=> A= \(\sqrt{4x-2}\)
câu 3: C = \(\frac{\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)}{\left(\text{4+\sqrt{15}}\right)\left(\sqrt{10-\sqrt{6}}\right)\sqrt{4-\sqrt{15}}}\)
\(=\frac{\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3+\sqrt{5}}.\sqrt{3+\sqrt{5}}}{\sqrt{4+\sqrt{15}}.\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}}\)
=\(\frac{\sqrt{9-\left(\sqrt{5}\right)^2}\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3+\sqrt{5}}}{\sqrt{16-\left(\sqrt{15}\right)^2}.\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4+\sqrt{15}}}\)
\(=\frac{2\left(\sqrt{30+10\sqrt{5}}-\sqrt{6+2\sqrt{5}}\right)}{\sqrt{40+10\sqrt{15}}-\sqrt{24-6\sqrt{15}}}\)
\(=2.\frac{\left(\sqrt{5}+5\right)-\left(\sqrt{5}+1\right)}{\left(\sqrt{15}+5\right)-\left(\sqrt{15}+3\right)}\)
= 4
Tính
A=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
B=\(\left(3-\sqrt{5}\right)\cdot\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\cdot\sqrt{3-\sqrt{5}}\)
C=\(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{ }}3}}\)
D=\(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
E=\(\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{5}}-\sqrt{11+2\sqrt{10}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}}+\sqrt{12+8\sqrt{2}}}\)
a: \(A=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
b: \(\sqrt{2}\cdot B=\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\)
\(\Leftrightarrow B\sqrt{2}=3\sqrt{5}+3-5-\sqrt{5}+3\sqrt{5}-3+5-\sqrt{5}\)
\(\Leftrightarrow B\sqrt{2}=4\sqrt{5}\)
hay \(B=2\sqrt{10}\)
d: \(D\sqrt{2}=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}-2\cdot\left(\sqrt{5}-1\right)\)
\(=2\sqrt{5}-2\sqrt{5}+2=2\)
hay \(D=\sqrt{2}\)