\(F=\frac{4.\sqrt{x}+15}{2.\sqrt{x}+9}=\frac{4.\sqrt{x}+18-3}{2.\sqrt{x}+9}=\frac{2.\left(2.\sqrt{x}+9\right)}{2.\sqrt{x}+9}-\frac{3}{2.\sqrt{x}+9}=2-\frac{3}{2.\sqrt{x}+9}\)
Có: \(2.\sqrt{x}+9\ge9\Rightarrow\frac{3}{2.\sqrt{x}+9}\le\frac{1}{3}\)
\(\Rightarrow F=2-\frac{3}{2.\sqrt{x}+9}\ge\frac{5}{3}\)
Dấu "=" xảy ra khi \(2.\sqrt{x}=0\Rightarrow\sqrt{x}=0\Rightarrow x=0\)
Vậy Min F = \(\frac{5}{3}\)khi x = 0
để tìm \(min\) của \(F\) ta xét \(GTNN\)của\(\sqrt{x}\)
\(GTNN\)của \(\sqrt{x}\)là \(0\)
thay \(0\)vào căn của biểu thức ta có:
\(F=\frac{4.\sqrt{0}+15}{2.\sqrt{0}+9}=\frac{15}{9}\approx1,6666666666667\)
vậy \(min\)của \(F\)\(\approx1,6\)