cho a+b/a-b=a+c/c-a.c/m a^2=bc
cho a,b,c khác 0,a khác b,b.c khác 1 và a.c khác 1
CM:\(\frac{a^{2-bc}}{a\left(1-bc\right)}=\frac{b^{2-ac}}{b\left(1-ac\right)}\Leftrightarrow a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Cho a,b,c>0 và a^2+b^2+c^2=1. tìm min của (a.b/c)+(b.c/a)+(a.c/b)?
Áp dụng BĐT Am-Gm ta được:
\(\dfrac{ab}{c}+\dfrac{bc}{a}\ge2\sqrt{\dfrac{ab^2c}{ca}}=2b^2\)
\(\dfrac{bc}{a}+\dfrac{ac}{b}\ge2\sqrt{\dfrac{abc^2}{ab}}=2c^2\)
\(\dfrac{ab}{c}+\dfrac{ac}{b}\ge2\sqrt{\dfrac{a^2bc}{bc}}=2a^2\)
\(\Rightarrow\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a^2+b^2+c^2=1\)
Vậy giá trị nhỏ nhất của \(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}=1\)
Cho a,b, c khác 0 , thỏa mãn : \(\dfrac{a.b}{a+b}\) = \(\dfrac{b.c}{b+c}\) = \(\dfrac{a.c}{a+c}\)
Tính P = \(\dfrac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}\)
\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
\(\Leftrightarrow\dfrac{a+b}{ab}=\dfrac{b+c}{bc}=\dfrac{c+a}{ca}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}\\\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{c}\\\dfrac{1}{b}=\dfrac{1}{a}\end{matrix}\right.\)
\(\Leftrightarrow a=b=c\)
\(\Rightarrow P=1\)
ta có \(\left\{{}\begin{matrix}\dfrac{ab}{a+b}=\dfrac{ac}{a+c}\\\dfrac{ab}{a+b}=\dfrac{bc}{b+c}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a.\dfrac{b}{a+b}=a.\dfrac{c}{c+a}\\b.\dfrac{a}{a+b}=b.\dfrac{c}{b+c}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{b}{a+b}=\dfrac{c}{c+a}\\\dfrac{a}{a+b}=\dfrac{c}{b+c}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}1+\dfrac{b}{a}=1+\dfrac{c}{a}\\1+\dfrac{a}{b}=1+\dfrac{c}{b}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{b}{a}=\dfrac{c}{a}\\\dfrac{a}{b}=\dfrac{c}{b}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=c\\a=c\end{matrix}\right.\Rightarrow a=b=c\)
\(\Rightarrow P=\dfrac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=\dfrac{a^3+a^3+a^3}{a^3+a^3+a^3}=1\)
cho a.c - c^2 + bc - ab = -1
Chứng minh a= -b
Từ \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\left(1\right)\)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\left(2\right)\)
\(d^2=ac\Rightarrow\frac{c}{d}=\frac{d}{a}\left(3\right)\)
Từ (1) (2) (3) \(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow a=b=c=d\)
Khi đó M = \(\frac{a}{b+c+d}+\frac{b}{a+c+d}=\frac{a}{3a}+\frac{a}{3a}=\frac{1}{3}+\frac{1}{3}=\frac{2}{3}\)
Vậy \(M=\frac{2}{3}\)
Cho a,b, c khác 0 , thỏa mãn : \(\frac{a.b}{a+b}=\frac{b.c}{b+c}=\frac{a.c}{a+c}\)
Tính \(P=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}\)
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}\\\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{a}=\frac{1}{c}\\\frac{1}{b}=\frac{1}{a}\end{cases}}\)
\(\Leftrightarrow a=b=c\)
Vậy P =1
Cho các số a,b,c,d ≠ 0 và \(b^2=a.c\) ; \(c^2=b.d\) ; \(b^3+c^3+d^3\ne0\). C/m rằng :\(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\)
\(\left.\begin{matrix} b^2=ac\Rightarrow \dfrac{a}{b}=\dfrac{b}{c} \\c^2=bd \Rightarrow \dfrac{b}{c}=\dfrac{c}{d}\end{matrix}\right\}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\\ \Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}\)
Áp dụng t/c của DTSBN , ta có :
\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\\ \Rightarrow\dfrac{a^3}{b^3}=\dfrac{a^3+b^3+c^3}{d^3+c^3+d^3}\left(1\right)\)
Có `a^3/b^3=a/b*a/b*a/b=a/b*b/c*c/d=a/d` ( do `a/b=b/c=c/d` )`(2)
Từ `(1);(2)=>` \(\dfrac{a}{d}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
Phân tích đa thức thành nhân tử:
1, a.(b^2+c^2+b.c)+b.(c^2+a^2+a.c)+c.(a^2+b^2+a.b)
2, ab.(a+b)-bc.(b+c)+ac.(a-c)
3, a.(b^2+c^2)+b.(c^2+a^2)+c(a^2+b^2)+2abc
cho : b^2 = a.c . CMR a^2+b^2/a-c = c+d / b^2 + c^2= a/c