Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kim Trí Ngân
Xem chi tiết
Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 11 2021 lúc 9:37

\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)

\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)

\(x=0;y=0\Leftrightarrow B=0\)

Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)

Vậy \(A\ne B\)

Trần Thị Tuý Nga
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 4 2021 lúc 23:29

2: Thay \(x=\dfrac{1}{2}\) và y=2 vào M, ta được:

\(M=\dfrac{2\cdot\left(\dfrac{1}{2}\right)^2\cdot2-1.2\cdot\left(3\cdot\dfrac{1}{2}-2\cdot2\right)}{\dfrac{1}{2}\cdot2}\)

\(=4\cdot\dfrac{1}{4}-1.2\left(\dfrac{3}{2}-4\right)\)

\(=1-1.8+4.8\)

\(=4\)

Nguyễn Lê Phước Thịnh
8 tháng 4 2021 lúc 23:28

1: Ta có: \(\left(-\dfrac{2}{3}x^3y^2\right)z\cdot5xy^2z^2\)

\(=\left(-\dfrac{2}{3}\cdot5\right)\cdot\left(x^3\cdot x\right)\cdot\left(y^2\cdot y^2\right)\cdot\left(z\cdot z^2\right)\)

\(=\dfrac{-10}{3}x^4y^4z^3\)

Sách Giáo Khoa
Xem chi tiết
Chi Nguyễn Khánh
17 tháng 10 2017 lúc 0:28

Bài 45: (SBT/12):

a. (5x4 - 3x3 + x2) : 3x2

= (5x4 : 3x2) + (-3x3 : 3x2) + (x2 : 3x2)

=\(\dfrac{5}{2}\)x2 - x + \(\dfrac{1}{3}\)

b. (5xy2 + 9xy - x2y2) : (-xy)

= [5xy2 : (-xy)] + [9xy : (-xy)] + [(-x2y2) : (-xy)]

= -5y - 9 + xy

c. (x3y3 : \(\dfrac{1}{3}\)x2y3 - x3y2) : \(\dfrac{1}{3}\)x2y2

= (x3y3 : \(\dfrac{1}{3}\)x2y2) + (-\(\dfrac{1}{2}\)x2y3 : \(\dfrac{1}{3}\)x2y2) + (-x3y2 : \(\dfrac{1}{3}\)x2y2)

= 3xy - \(\dfrac{3}{2}\)y - 3x

tran duc huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 1 2023 lúc 15:30

a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)\left(y+3\right)-xy=100\\xy-\left(x-2\right)\left(y-2\right)=64\end{matrix}\right.\)

=>xy+3x+2y+6-xy=100 và xy-xy+2x+2y-4=64

=>3x+2y=94 và 2x+2y=68

=>x=26 và x+y=34

=>x=26 và y=8

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3+2}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5y+20-11}{y+4}=9\end{matrix}\right.\)

=>\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x+1}-\dfrac{2}{y+4}=4-3=1\\\dfrac{-2}{x+1}+\dfrac{11}{y+4}=9+5-2=12\end{matrix}\right.\)

=>x+1=18/35; y+4=9/13

=>x=-17/35; y=-43/18

Xem chi tiết
Nguyễn Huy Tú
25 tháng 7 2021 lúc 22:13

a, mình nghĩ đề là cm đẳng thức nhé 

\(VT=\left(5x^4-3x^3+x^2\right):3x^2=\frac{5x^4}{3x^2}-\frac{3x^3}{3x^2}+\frac{x^2}{3x^2}=\frac{5}{3}x^2-x+\frac{1}{3}=VP\)

Vậy ta có đpcm 

b, \(VT=\left(5xy^2+9xy-x^2y^2\right):\left(-xy\right)=\frac{5xy^2}{-xy}+\frac{9xy}{-xy}-\frac{x^2y^2}{-xy}\)

\(=-5y-9+xy=VP\)

Vậy ta có đpcm 

c, \(VT=\left(x^3y^3-x^2y^3-x^3y^2\right):x^2y^2=\frac{x^3y^3}{x^2y^2}-\frac{x^2y^3}{x^2y^2}-\frac{x^3y^2}{x^2y^2}=xy-y-x=VP\)

Vậy ta có đpcm 

Khách vãng lai đã xóa
....
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 7 2021 lúc 14:02

a.

\(\left\{{}\begin{matrix}\left(x-1\right)^2-\left(y+1\right)^2=0\\x+3y-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1-y-1\right)\left(x-1+y+1\right)=0\\x+3y-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-2\right)\left(x+y\right)=0\\x+3y-5=0\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x-y-2=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{4}\\y=\dfrac{3}{4}\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x+y=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=\dfrac{5}{2}\end{matrix}\right.\)

Nguyễn Việt Lâm
23 tháng 7 2021 lúc 14:04

b.

\(\left\{{}\begin{matrix}xy-2x-y+2=0\\3x+y=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y-2\right)-\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)

TH1:

\(\left\{{}\begin{matrix}x-1=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)

TH2:

\(\left\{{}\begin{matrix}y-2=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)

Nguyễn Việt Lâm
23 tháng 7 2021 lúc 14:09

c.

\(\left\{{}\begin{matrix}\left(x+y\right)^2-4\left(x+y\right)-12=0\\\left(x-y\right)^2-2\left(x-y\right)=3\end{matrix}\right.\)

Xét pt:

\(\left(x+y\right)^2-4\left(x+y\right)-12=0\)

\(\Leftrightarrow\left(x+y+2\right)\left(x+y-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y+2=0\\x+y-6=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}y=-x-2\\y=6-x\end{matrix}\right.\)

TH1: \(y=-x-2\) thế vào \(\left(x-y\right)^2-2\left(x-y\right)=3\)

\(\Rightarrow\left(2x+2\right)^2-2\left(2x+2\right)=3\)

\(\Leftrightarrow4x^2+4x-3=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\Rightarrow y=-\dfrac{5}{2}\\x=-\dfrac{3}{2}\Rightarrow y=-\dfrac{1}{2}\end{matrix}\right.\)

TH2: \(y=6-x\) thế vào...

\(\left(2x-6\right)^2-2\left(2x-6\right)=3\)

\(\Leftrightarrow4x^2-28x+45=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\Rightarrow y=\dfrac{7}{2}\\y=\dfrac{9}{2}\Rightarrow y=\dfrac{3}{2}\end{matrix}\right.\)

Nguyệt Tích Lương
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 10 2021 lúc 23:22

a: \(5x^2y^4:10x^2y=\dfrac{1}{2}y^3\)

c: \(\left(-xy\right)^{10}:\left(-xy\right)^5=-x^5y^5\)

Lê Hoàng Thảo Nhi
Xem chi tiết
Lê Minh Anh
17 tháng 7 2018 lúc 14:08

a)(x − 12)2 = 0

=>x − 12 = 0

=> x = 12

b) (x+12)2 = 0,25

=> x + 12 = 0,5 hoặc x + 12= -0,5

=> x = -11,5 hoặc x = -12,5

c) (2x−3)3 = -8

=> 2x - 3 = -2

=> x = 0,5

d) (3x−2)5 = −243

=> 3x - 2 = -3

=> x = -1/3

e) (7x+2)-1 = 3-2

=> \(\dfrac{1}{7x+2}=\dfrac{1}{9}\)

=> 7x + 2 = 9

=> x = 1

f) (x−1)3 = −125

=> (x−1) = −5

=> x = -4

g) (2x−1)4 = 81

=> 2x - 1 = 3

=> x = 2

h) (2x−1)6 = (2x−1)8

=> 2x -1 = 0 hoặc 2x - 1 = 1 hoặc 2x - 1 = -1

=> x = 1/2 hoặc x = 1 hoặc x = 0

Nguyễn Thanh Hằng
17 tháng 7 2018 lúc 14:18

a/ \(\left(x-\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{1}{2}=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy ...

b/ \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+\dfrac{1}{2}\right)^2=\left(\dfrac{1}{2}\right)^2\\\left(x+\dfrac{1}{2}\right)^2=\left(-\dfrac{1}{2}\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{2}\\x+\dfrac{1}{2}=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Vậy ..

c/ \(\left(2x-3\right)^3=-8\)

\(\Leftrightarrow\left(2x-3\right)^3=\left(-2\right)^3\)

\(\Leftrightarrow2x-3=-2\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy ...

d/ \(\left(3x-2\right)^5=-243\)

\(\left(3x-2\right)^5=\left(-3\right)^5\)

\(\Leftrightarrow3x-2=-3\)

\(\Leftrightarrow x=-\dfrac{1}{3}\)

Vậy ...

e/ \(\left(x-1\right)^3=-125\)

\(\Leftrightarrow\left(x-1\right)^3=\left(-5\right)^3\)

\(\Leftrightarrow x-1=-5\)

\(\Leftrightarrow x=-4\)

Vậy..

f/ \(\left(2x-1\right)^4=81\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)^4=3^4\\\left(2x-1\right)^4=\left(-3\right)^4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Vậy...

g/ \(\left(2x-1\right)^6=\left(2x-1\right)^8\)

\(\Leftrightarrow\left(2x-1\right)^8-\left(2x-1\right)^6=0\)

\(\Leftrightarrow\left(2x-1\right)^6\left[\left(2x-1\right)^2-1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)^6=0\\\left(2x-1\right)^2-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\\left[{}\begin{matrix}2x-1=1\\2x-1=-1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\end{matrix}\right.\)

Vậy..

Lê Minh Anh
17 tháng 7 2018 lúc 14:24

MÌNH XIN LỖI, câu A và B mình ghi sai đề

a) \(\left(x-\dfrac{1}{2}\right)^2=0\)

\(\Rightarrow x-\dfrac{1}{2}=0\)

\(\Rightarrow x=\dfrac{1}{2}\)

b)\(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)

\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{2}\\x+\dfrac{1}{2}=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)