trong tam giác chứng minh rằng;
a.chỉ có thể nhiều nhất là 1 góc tù
b.phải có ít nhất 2 góc nhọn
) Cho tam giác ABC có các góc đều nhọn. Các đường cao AD, BE, CF cắt nhau tại H.
1) Chứng minh rằng: AE.AC = AF.AB
2) Chứng minh rằng tam giác AFE đồng dạng tam giác ACB
3) Chứng minh rằng tam giác FHE đồng dạng tam giác BHC
4) Chứng minh rằngBF.BA+CE.CA = BC2
1: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF và AE/AB=AF/AC
2: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
=>ΔAEF đồng dạng vơi ΔABC
3: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng với ΔHEC
=>HF/HE=HB/HC
=>HF/HB=HE/HC
Xét ΔHFE và ΔHBC có
HF/HB=HE/HC
góc FHE=góc BHC
=>ΔFHE đồng dạng với ΔBHC
1 ) Cho tam giác ABC . Gọi M là một điểm nằm trong tam giác . Chứng minh rằng : MA + MB + MC > nửa chu vi tam giác đó
2 ) Cho tam giác ABC . Gọi M là trung điểm cạnh BC . Chứng minh rằng : AM < AB + AC / 2
Cho Tam Giác ABC, có BAC =120 đọ. đường phân giác trong của góc A cắt BC tại D.Từ D kẻ DE vuông góc với AB, DF vuông góc với AC.a)Chứng MInh tam giác ADE = ADF. b)Chứng minh rằng tam giác DEF là tam giác đều C) qua điểm C vẽ đường thẳng song song với AD, nó cắt đường thẳng AB tại M. Chứng minh rằng tam giác ACM là tam giác đèu
MIK CAN GAP CAM ON RAT NHIEU
Cho tam giác ABC cân có ABC= ABC= 75°. Lấy điểm D ở bên trong tam giác và điểm E
ở bên ngoài tam giác sao cho DAB = DBA = 15° và EAC= ECA = 15°.
1) Chứng minh rằng ∆ABD = ∆ACE.
2) Chứng minh rằng tam giác CDE là một tam giác cân.
3) Gọi F là giao điểm của BD và CE. Tính số đo các góc của tam giác DEF.
1: Xét ΔABD và ΔACE có
\(\widehat{BAD}=\widehat{CAE}\)
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
Do đó: ΔABD=ΔACE
cho tam giác ABC phân giác AB trong tam giác ADB kẻ phân giác DE trong tam giác ADC kẻ phân giác DF chứng minh rằng AFxBEDC=AExBDxFC
cho tam giác ABC phân giác AB trong tam giác ADB kẻ phân giác DE trong tam giác ADC kẻ phân giác DF chứng minh rằng AFxBEDC=AExBDxFC
2/ Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm M, trên cạnh AC lấy điếm N sao cho AM = AN.
a. Chứng minh rằng Tam giác AMN là tam giác cân.
b. Chứng minh rằng: MN // BC.
c. Chứng minh rằng: tam giác MBC bằng tam giác NCB.
a: Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
b: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
c: Xét ΔMBC và ΔNCB có
MB=NC
\(\widehat{MBC}=\widehat{NCB}\)
BC chung
Do đó: ΔMBC=ΔNCB
b) -Ta có:
\(\widehat{BAC}=180^0-2\widehat{AMN}\) (Tam giác AMN cân tại A).
\(\widehat{BAC}=180^0-2\widehat{ABC}\) (Tam giác ABC cân tại A).
=>\(\widehat{AMN}=\widehat{ABC}\) mà 2 góc này ở vị trí so le trong.
=>MN//BC
Bài 2:
a) Vì \(AM=AN\) (giả thiết)
\(\Rightarrow\Delta AMN\) cân tại \(A\)
b) Vì \(\Delta AMN\) cân tại \(A\) (chứng minh trên)
\(\Rightarrow\widehat{AMN}=\dfrac{180^o-\widehat{A}}{2}\) (1)
Vì \(\Delta ABC\) cân tại \(A\) (giả thiết)
\(\Rightarrow\widehat{ABC}=\dfrac{180^o-\widehat{A}}{2}\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{AMN}=\widehat{ABC}\)
Mà \(2\) góc này ở vị trí đồng vị
\(\Rightarrow MN//BC\)
c) Ta có: \(\left\{{}\begin{matrix}AM+MB=AB\left(M\in AB\right)\\AN+NC=AC\left(N\in AC\right)\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}AM=AC\left(cmt\right)\\AB=AC\left(cmt\right)\end{matrix}\right.\)
\(\Rightarrow MB=NC\)
Xét \(\Delta MBC\) và \(\Delta NCB\) có:
\(MB=NC\left(cmt\right)\)
\(\widehat{MBC}=\widehat{NCB}\) (do \(\Delta ABC\) cân tại \(A\))
\(BC\) là cạnh chung
\(\Rightarrow\Delta MBC=\Delta NCB\left(c.g.c\right)\)
Chứng minh rằng trong tam giác đều, điểm cách đều 3 cạnh của tam giác là trọng tâm của tam giác đó.
Vì \(\Delta ABC\) đều nên AB = AC = BC (tính chất tam giác đều)
Vì I là điểm cách đều 3 cạnh của tam giác nên là giao điểm của 3 đường phân giác của tam giác ABC
Áp dụng ví dụ 2, ta được, AI là đường trung tuyến của \(\Delta ABC\)
Tương tự, ta cũng được BI, CI là đường trung tuyến của \(\Delta ABC\)
Vậy I là giao điểm của ba đường đường trung tuyến của \(\Delta ABC\) nên I là trọng tâm của \(\Delta ABC\).
Chú ý:
Với tam giác đều, giao điểm của 3 đường trung tuyến cũng là giao điểm của 3 đường phân giác.
Cho tam giác nhọn ABC nội tiếp trong đường tròn (O), AB < AC. Kẻ đường cao AH của tam giác. H thuộc BC và đường kính AD của đường tròn (O).
1. Chứng minh rằng tam giác BAH đồng dạng tam giác DAC.
2. Kẻ BK vuông góc AD, K thuộc AD. Chứng minh rằng tứ giác ABHK nội tiếp.
3. Chứng minh rằng đường thẳng HK vuông góc AC.
Cho tam giác ABC là tam giác nhọn có hai đường cao BM và CN
a) Chứng minh rằng: Tam giác AMB đồng dạng tam giác ANC và AM.AC = AN.AB
b) Chứng minh rằng: góc AMN = góc ABC
c) Kẻ hai đường cao MQ và NK của tam giác AMN. Chứng minh rằng: QK//BC.