Cho a, b, c là độ dài 3 cạnh của một tam giác. C/minh biểu thức:
( b^2 + c^2 - a^2 )^2 - 4b^2c^2 < 0
Cho a, b, c là độ dài 3 cạnh của một tam giác. C/minh biểu thức: \(\left(b^2+c^2-a^2\right)^2-4b^2c^2< 0\)
Ta có: (b^2 +c^2 -a^2)^2 -4b^2 .c^2
=(b^2 +c^2 -a^2)^2 -(2bc)^2
=(b^2 +c^2 -a^2 -2bc)(b^2 +c^2 -a^2 +2bc)
=(b^2 +c^2 -2bc -a^2) (b^2 +c^2 +2bc -a^2)
=[ (b-c)^2 -a^2] [(b+c)^2 -a^2]
=(b-c-a)(b-c+a)(b+c-a)(b+c+a)
Áp dụng bất đẳng thức tam giác, ta được: b-c-a<0 ,b-c+a>0 ,b+c-a>0 và b+c+a>0
Do đó: (b-c-a)(b-c+a)(b+c-a)(b+c+a)<0
Vậy (b^2 +c^2 -a^2)- 4b^2 .c^2 <0
Chúc bạn học tốt.
Bài 34: Cho biểu thức: A=(b^2+c^2-a^2)^2-4b^2c^2(đố Nguyễn Lê Phước Thịnh đó :_)
a, Phân tích A thành nhân tử
b, Chứng minh rằng: Nếu a, b, c là độ dài các cạnh của 1 tam giác thì A< 0
a: \(A=\left(b^2+c^2-a^2\right)^2-4b^2c^2\)
\(=\left(b^2+c^2-a^2\right)^2-\left(2bc\right)^2\)
\(=\left(b^2-2bc+c^2-a^2\right)\left(b^2+2bc+c^2-a^2\right)\)
\(=\left[\left(b+c\right)^2-a^2\right]\left[\left(b-c\right)^2-a^2\right]\)
\(=\left(b+c-a\right)\left(b+c+a\right)\left(b-c-a\right)\left(b-c+a\right)\)
b: a,b,c là độ dài 3 cạnh của 1 tam giác
=>b+c>a và a+b>c và a+c>b
=>b+c-a>0 và a+b-c>0 và a+c-b>0
=>b+c-a>0 và b-(c+a)<0 và a+b-c>0
=>(b+c-a)[b-(c+a)][a+b-c](a+b+c)<0
=>A<0
Bài 34: Cho biểu thức: A=(b^2+c^2-a^2)^2-4b^2c^2(đố Nguyễn Lê Phước Thịnh đó :_)
a, Phân tích A thành nhân tử
b, Chứng minh rằng: Nếu a, b, c là độ dài các cạnh của 1 tam giác thì A< 0
Cho a,b,c là độ dài 3 cạnh của một tam giác.
Chứng minh \(4b^2c^2-\left(b^2+c^2-a^2\right)^2>0\)
Cho a, b, c là độ dài 3 cạnh của một tam giác. C/minh biểu thức: \(\left(b^2+c^2-a^2\right)^2-4b^2c^2< 0\)
Trong 1 tam giác , ta luôn có :
b - c < a
<=> (b-c)2 < a2
<=> b2 - 2bc +c2 < a2
<=> b2 +c2 - a2 < 2bc
<=> (b2 +c2 -a2 )2 < (2bc)2
<=> ( b2 + c2-a2)2 - 4b2c2 < 0 (dpcm)
cho a,b,c là ba cạnh của tam giác. Cm rằng biểu thức:
A=(b^2+c^2-a^2)-4b^2c^2<0
\(b^2+c^2-a^2-2bc=\left(b^2-2bc+c^2\right)-a^2=\left(b-c\right)^2-a^2=\left(b-c-a\right)\left(b-c+a\right)\)
\(=\left(b-\left(c+a\right)\right)\left(b-\left(c-a\right)\right)\)
vì \(b< c+a;b>c-a\)(bđt tam giác )\(\Rightarrow b-\left(c+a\right)< 0;b-\left(c-a\right)>0\Rightarrow\left(b-\left(c+a\right)\right)\left(b-\left(c-a\right)\right)< 0\)
\(\Rightarrow b^2+c^2-a^2-2bc< 0\Rightarrow b^2+c^2-a^2< 2bc\)\(\Rightarrow b^2+c^2-a^2< \left(2bc\right)^2=4b^2c^2\)
\(\Rightarrow A=\left(b^2+c^2-a^2\right)-4b^2c^2< 0\)
Đinh Quang Hiệp bài đó còn cách giải nào khác ko.
Cho a, b,c là độ dài 3 cạnh của một tam giác. Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{a}{\sqrt{2b^2+2c^2-a^2}}+\dfrac{b}{\sqrt{2a^2+2c^2-b^2}}+\dfrac{c}{\sqrt{2b^2+2a^2-c^2}}\).
Ta có:
\(\left(2a^2-b^2-c^2\right)^2\ge0\)
\(\Leftrightarrow4a^4+b^4+c^4-4a^2b^2-4a^2c^2+2b^2c^2\ge0\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2\ge6a^2b^2+6a^2c^2-3a^4\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge3a^2\left(2b^2+2c^2-a^2\right)\)
\(\Leftrightarrow\dfrac{1}{\sqrt{2b^2+2c^2-a^2}}\ge\dfrac{\sqrt{3}a}{a^2+b^2+c^2}\)
\(\Leftrightarrow\dfrac{a}{\sqrt{2b^2+2c^2-a^2}}\ge\sqrt{3}\dfrac{a^2}{a^2+b^2+c^2}\)
Tương tự: \(\dfrac{b}{\sqrt{2a^2+2c^2-b^2}}\ge\sqrt{3}.\dfrac{b^2}{a^2+b^2+c^2}\) ; \(\dfrac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\sqrt{3}.\dfrac{c^2}{a^2+b^2+c^2}\)
Cộng vế: \(P\ge\dfrac{\sqrt{3}\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=\sqrt{3}\)
\(P_{min}=\sqrt{3}\) khi \(a=b=c\)
cho biểu thức P=(b^2+c^2-a^2)^2-4b^2c^2. Chứng minh nếu a,b,c là ba cạch của tam giác thì P<0
Cho biểu thức: A = ( b2 + c2 - a2)2 - 4b2c2
a) Phân tích biểu thức A thành nhân tử.
b) CMR: Nếu a,b,c là độ dài các cạnh của một tam giác thì A<0.
câu a làm theo hằng đẳng thức
câu b ta sẽ đc (b^2 +c^2 -a^2 -2bc )(b^2 +c^2 -a^2 +2bc ) = { (b-c)^2 -a^2 } {(b+c)^2-a^2}
theo bất đẳng thức trong tam giác thì hiệu 2 cạnh luôn nhỏ hơn cạnh còn lại nên {(b-c)^2-a^2} <0
mà {(b+c)^2-a^2} >0 \(\Rightarrow\)A<0
k cho mk cái nha
a, \(A=\left(b^2+c^2-a^2\right)-4b^2c^2\)
\(\Rightarrow A=\left(b^2+c^2-a^2\right)-\left(2bc\right)^{^2}\)
\(\Rightarrow A=\left(b^2+c^2-a^2-2bc\right)\left(b^2+c^2-a^2+2bc\right)\)
\(\Rightarrow A=\left[\left(b-c\right)^2-a^2\right]\left[\left(b+c\right)^2-a^2\right]\)
\(\Rightarrow A=\left(c-b-a\right)\left(c-b+a\right)\left(c+b-a\right)\left(c+b+a\right)\)
b, Như bạn Trần Thị Nhung