Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Hải Dương
Xem chi tiết
phan thị yến
Xem chi tiết
dangthihuyendiu
14 tháng 8 2018 lúc 12:12

đặt \(\frac{a}{b}=\frac{c}{d}=k\)

=> a=bk, c=dk  =>\(\frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b\left(2k+5\right)}{b\left(3k-4\right)}=\frac{2k+5}{3k-4}\)(1)

=> \(\frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{2k+5}{3k-4}\) ( 2)

từ (1)( 2)=> \(\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)

câu b c/m tg tự 

Khải Phan
Xem chi tiết
Nguyễn Thanh Hằng
21 tháng 9 2017 lúc 18:30

a/ Đặt :

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có :

\(VT=\dfrac{a-b}{a+b}=\dfrac{bk-b}{bk+b}=\dfrac{b\left(k-1\right)}{b\left(k+1\right)}=\dfrac{k-1}{k+1}\left(1\right)\)

\(VP=\dfrac{c-d}{c+d}=\dfrac{dk-d}{dk+d}=\dfrac{d\left(k-1\right)}{d\left(k+1\right)}=\dfrac{k-1}{k+1}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)

b/ Đặt :

\(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có :

\(VT=\dfrac{2a-5b}{3a+4b}=\dfrac{2bk-5b}{3bk+4b}=\dfrac{b\left(2k-5\right)}{b\left(3k+4\right)}=\dfrac{2k-5}{3k+4}\left(1\right)\)

\(VP=\dfrac{2c-5d}{3c+4d}=\dfrac{2dk-5d}{3dk+4d}=\dfrac{d\left(2k-5\right)}{d\left(3k+4\right)}=\dfrac{2k-5}{3k+4}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)

fan FA
Xem chi tiết
Nguyễn Hữu Huy
19 tháng 10 2016 lúc 19:29

GỢI Ý 

bạn có thể đặt k để tính 

hoặc bạn hoán đổi trung tỉ giải bài toán

le duc minh vuong
Xem chi tiết
Nguyễn Huy Tú
5 tháng 1 2017 lúc 12:27

Giải:

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\)

\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a-4b}{3c-4d}\)

\(\Rightarrow\frac{2a+5b}{2c+5d}=\frac{3a-4b}{3c-4d}\left(=\frac{a}{c}\right)\)

\(\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\left(đpcm\right)\)

Vậy...

Lê Thị Thảo Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 6 2022 lúc 23:02

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{3a+4b}{2a}=\dfrac{3bk+4b}{2bk}=\dfrac{3k+4}{2k}\)

\(\dfrac{3c+4d}{2c}=\dfrac{3dk+4d}{2dk}=\dfrac{3k+4}{2k}\)

Do đó: \(\dfrac{3a+4b}{2a}=\dfrac{3c+4d}{2c}\)

Nguyễn Ngọc Linh
Xem chi tiết
Đỗ Lê Tú Linh
13 tháng 12 2015 lúc 15:25

Gọi a/b=c/d=k nên a=bk;c=dk

=>2a+5b/3a-4b=2bk+5b/3bk-4b=b(2k+5)/b(3k-4)=2k+5/3k-4(1)

=>2c+5d/3c-4d=2dk+5d/3dk-4d=d(2k+5)/d(3k-4)=2k+5/3k-4(2)

Từ (1);(2) =>2a+5b/3a-4b=2c+5d/3c-4d

nguyen thi mai thanh
22 tháng 11 2017 lúc 20:30

Thank Đỗ Lê Tú Linh n' 😊😊😊

phuong hoang lua
10 tháng 12 2017 lúc 16:39

😀😀😀

sdhsdfgh
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 10 2021 lúc 16:49

a, Áp dụng t/c dtsbn:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

b, Áp dụng t/c dtsbn:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{5b}{5d}=\dfrac{3a}{4c}=\dfrac{4b}{4d}=\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3c-4d}\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)

 

 

Nguyễn Hoàng Minh
14 tháng 10 2021 lúc 16:54

c, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)

\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\)

Do đó \(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

d, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

Do đó \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

huỳnh ngọc anh
Xem chi tiết