cho x,y>0 thoả mãn x+y=1
tính gtnn của biểu thức A=\(\dfrac{2}{xy}\)+\(\dfrac{3}{x^2+y^2}\)
Cho x,y >0 thoả mãn x+y ≤ 1. Tìm GTNN của P=\(\dfrac{1}{x^2+y^2}\)+ \(\dfrac{1}{xy}\)+ 4xy.
`P=1/(x^2+y^2)+1/(xy)+4xy`
`=1/(x^2+y^2)+1/(2xy)+4xy+1/(4xy)+1/(4xy)`
Áp dụng bunhia dạng phân thức
`=>1/(x^2+y^2)+1/(2xy)>=4/(x+y)^2`
Mà `(x+y)^2<=1`
`=>1/(x^2+y^2)+1/(2xy)>=4`
Áp dụng cosi:
`4xy+1/(4xy)>=2`
`4xy<=(x+y)^2<=1`
`=>1/(4xy)>=1`
`=>P>=4+2+1=7`
Dấu "=" `<=>x=y=1/2`
Cho số thực x; y; z lớn hơn 0 thoả mãn: \(3\sqrt{xy}+2\sqrt{xz}=2\)
Tìm GTNN của \(A=\dfrac{5yz}{x}+\dfrac{7xz}{y}+\dfrac{8xy}{z}\)
\(2=3\sqrt{xy}+2\sqrt{xz}\le\dfrac{3}{2}\left(x+y\right)+x+z\)
\(\Rightarrow5x+3y+2z\ge4\)
\(A=5\left(\dfrac{xy}{z}+\dfrac{xz}{y}\right)+3\left(\dfrac{xy}{z}+\dfrac{yz}{x}\right)+2\left(\dfrac{xz}{y}+\dfrac{yz}{x}\right)\)
\(A\ge5.2x+3.2y+2.2z=2\left(5x+3y+2z\right)\ge8\)
\(A_{min}=8\) khi \(x=y=z=\dfrac{2}{5}\)
Cho x và y là hai số dương thỏa mãn: x+y=2. Tìm GTNN của biểu thức: Q=\(\dfrac{2}{x^2+y^2}+\dfrac{3}{xy}\)
Ta có: \(Q=\dfrac{2}{x^2+y^2}+\dfrac{3}{xy}=\dfrac{2}{x^2+y^2}+\dfrac{6}{2xy}=\dfrac{2}{x^2+y^2}+\dfrac{2}{2xy}+\dfrac{4}{2xy}\)
Áp dụng BĐT phụ: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
\(\Rightarrow2\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)\ge2\left(\dfrac{4}{x^2+2xy+y^2}\right)=2\left[\dfrac{4}{\left(x+y\right)^2}\right]=2.\dfrac{4}{4}=2\)
Dấu "=" xảy ra khi x=y=1
Áp dụng BĐT phụ: \(ab\le\dfrac{\left(a+b\right)^2}{4}\)
\(\Rightarrow xy\le\dfrac{\left(x+y\right)^2}{4}=\dfrac{2^2}{4}=1\)
Dấu"=" xảy ra khi x=y=1
\(\Rightarrow2xy\le2.1=2\)
\(\Rightarrow\dfrac{4}{2xy}\ge\dfrac{4}{2}=2\)
\(\Rightarrow Q=\dfrac{2}{x^2+y^2}+\dfrac{2}{2xy}+\dfrac{4}{2xy}=\dfrac{2}{x^2+y^2}+\dfrac{3}{xy}\ge2+2=4\)
Dấu"=" xảy ra khi x=y=1
Cho các số x,y > 0. Tìm GTNN của biểu thức sau:
a. \(A=\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{xy}{x^2+y^2}\)
b. \(C=\dfrac{\left(x-y\right)^2}{xy}+\dfrac{6xy}{\left(x+y\right)^2}\)
\(A=\dfrac{x^2+y^2}{xy}+\dfrac{xy}{x^2+y^2}=\dfrac{x^2+y^2}{4xy}+\dfrac{xy}{x^2+y^2}+\dfrac{3\left(x^2+y^2\right)}{4xy}\)
\(A\ge2\sqrt{\dfrac{\left(x^2+y^2\right)xy}{4xy\left(x^2+y^2\right)}}+\dfrac{3.2xy}{4xy}=\dfrac{5}{2}\)
Dấu "=" xảy ra khi \(x=y\)
\(C=\dfrac{\left(x+y\right)^2-4xy}{xy}+\dfrac{6xy}{\left(x+y\right)^2}=\dfrac{\left(x+y\right)^2}{xy}+\dfrac{6xy}{\left(x+y\right)^2}-4\)
\(C=\dfrac{3\left(x+y\right)^2}{8xy}+\dfrac{6xy}{\left(x+y\right)^2}+\dfrac{5\left(x+y\right)^2}{8xy}-4\)
\(C\ge2\sqrt{\dfrac{18xy\left(x+y\right)^2}{8xy\left(x+y\right)^2}}+\dfrac{5.4xy}{8xy}-4=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(x=y\)
cho hai số dương x, y thay đổi thỏa mãn XY = 2. Tìm GTNN của biểu thức \(M=\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{2x+y}\)
\(M=\dfrac{2x+y}{xy}+\dfrac{3}{2x+y}=\dfrac{2x+y}{2}+\dfrac{3}{2x+y}=\dfrac{3\left(2x+y\right)}{16}+\dfrac{3}{2x+y}+\dfrac{5}{16}\left(2x+y\right)\ge2\sqrt{\dfrac{3}{16}.3}+\dfrac{5}{16}.2\sqrt{2xy}=\dfrac{3}{2}+\dfrac{5}{4}=\dfrac{11}{4}\).
Đẳng thức xảy ra khi x = 1; y = 2.
\(M=\dfrac{2x+y}{xy}+\dfrac{3}{2x+y}=\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\)
\(M=\dfrac{3\left(2x+y\right)}{16}+\dfrac{3}{2x+y}+\dfrac{5\left(2x+y\right)}{16}\ge2\sqrt{\dfrac{9\left(2x+y\right)}{16\left(2x+y\right)}}+\dfrac{5}{16}.2\sqrt{2xy}=\dfrac{11}{4}\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;2\right)\)
Ta có: \(M=\dfrac{2x+y}{xy}+\dfrac{3}{2x+y}=\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\)
\(=\left(\dfrac{3}{8}\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\right)+\dfrac{5}{8}\dfrac{2x+y}{2}\)
Có: \(\dfrac{3}{8}\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\ge2\sqrt{\dfrac{3}{8}\dfrac{2x+y}{2}\dfrac{3}{2x+y}}=\dfrac{3}{2}\)
Dấu '=' xảy ra <=> \(\dfrac{3}{8}\dfrac{2x+y}{2}=\dfrac{3}{2x+y}\)
Có: \(\dfrac{5}{8}\dfrac{2x+y}{2}\ge\dfrac{5}{8}\sqrt{2xy}=\dfrac{5}{4}\)
Dấu '=' xảy ra <=> 2x=y và xy=2
\(\Rightarrow M\ge\dfrac{3}{2}+\dfrac{5}{4}=\dfrac{11}{4}\)
Dấu '=' xảy ra <=> x=1, y=2
Vậy GTNN của M là 11/4 <=> x=1;y=2
Cho hai số dương x,y thay đổi thỏa mãn xy=2. Tìm GTNN của biểu thức M=\(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{2x+y}\)
Ta có:
\(M=\dfrac{2x+y}{xx}+\dfrac{3}{2x+y}=\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\)
\(=\left(\dfrac{3}{8}\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\right)+\dfrac{5}{8}\dfrac{2x+y}{2}\)
Có: \(\dfrac{3}{8}\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\ge2\sqrt{\dfrac{3}{8}\dfrac{2x+y}{2}\dfrac{3}{2x+y}}=\dfrac{3}{2}\)
Dấu '=' xảy ra \(\Leftrightarrow\dfrac{3}{8}\dfrac{2x+y}{2}=\dfrac{3}{2x+y}\)
Có: \(\dfrac{5}{8}\dfrac{2x+y}{2}\ge\dfrac{5}{8}\sqrt{2xy}=\dfrac{5}{4}\)
Dấu '=' xảy ra \(\Leftrightarrow2x=y,xy=2\)
\(\Rightarrow M\ge\dfrac{3}{2}+\dfrac{5}{4}=\dfrac{11}{4}\)
Dấu '=' xảy ra \(\Leftrightarrow x=1,y=2\)
Vậy GTNN của M là \(\dfrac{11}{4}\Leftrightarrow x=1,y=2\)
cho hai số dương x,y thỏa mãn điều kiện x+y=1.Hãy tìm GTNN của biểu thức:
\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}\)
\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\dfrac{1}{2xy}\)
Áp dụng BĐT Schwarz : \(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\ge\dfrac{\left(1+1\right)^2}{x^2+y^2+2xy}=\dfrac{4}{\left(x+y\right)^2}=4\)
Lại có \(\dfrac{1}{2xy}=\dfrac{2}{4xy}\ge\dfrac{2}{\left(x+y\right)^2}=2\)
Cộng vế với vế được P \(\ge6\) ("=" khi x = y = 1/2)
Vậy Min P = 6 <=> x = y = 1/2
Cho các số x, y > 0. Tìm GTNN của các biểu thức sau:
a, A = \(\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{2xy}{x^2+y^2}\)
b, B = \(\dfrac{\left(x-y\right)^2}{xy}+\dfrac{4xy}{\left(x+y\right)^2}\)
\(A=\dfrac{x^2+y^2}{xy}+\dfrac{2xy}{x^2+y^2}=\dfrac{x^2+y^2}{2xy}+\dfrac{x^2+y^2}{2xy}+\dfrac{2xy}{x^2+y^2}\)
\(A\ge\dfrac{2xy}{2xy}+2\sqrt{\left(\dfrac{x^2+y^2}{2xy}\right)\left(\dfrac{2xy}{x^2+y^2}\right)}=3\)
Dấu "=" xảy ra khi \(x=y\)
\(B=\dfrac{\left(x+y\right)^2-4xy}{xy}+\dfrac{4xy}{\left(x+y\right)^2}=\dfrac{\left(x+y\right)^2}{xy}+\dfrac{4xy}{\left(x+y\right)^2}-4\)
\(B=\dfrac{\left(x+y\right)^2}{4xy}+\dfrac{4xy}{\left(x+y\right)^2}+\dfrac{3}{4}.\dfrac{\left(x+y\right)^2}{xy}-4\)
\(B\ge2\sqrt{\dfrac{\left(x+y\right)^2.4xy}{4xy.\left(x+y\right)^2}}+\dfrac{3}{4}.\dfrac{4xy}{xy}-4=1\)
\(B_{min}=1\) khi \(x=y\)
\(Q=\dfrac{x+2}{y^2}+\dfrac{y+2}{z^2}+\dfrac{z+2}{x^2}\)
Cho x,y,z>0 thoả mãn x+y+z=xyz.Tìm GTNN của Q
\(x+y+z=xyz\Leftrightarrow\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)
Đặt \(\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow ab+bc+ca=1\)
\(Q=\dfrac{b^2}{a}+\dfrac{c^2}{b}+\dfrac{a^2}{c}+2\left(a^2+b^2+c^2\right)\)
\(Q\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}+2\left(ab+bc+ca\right)=a+b+c+2\)
\(Q\ge\sqrt{3\left(ab+bc+ca\right)}+2=2+\sqrt{3}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\) hay \(x=y=z=\sqrt{3}\)