CM (x+2a)(x+3a)(x+5a)+a^4>=0 voi moi x
Bai1 : Tim max voi x thuoc [1;3]
F(x) = (x-1)(3-x)
G(x)=(2x-1)(3-x)
Bai2: cho a,b>0 thoa man 4/a+1/b=1
Tim min p=a+b
Bai3: cm Voi moi a>0 ta co a^2(1-2a)<=1/27
Bai4: cho a,b,c >0 tm ab+bc+ca=3
Cm a^3+b^3+c^3>=3
Bai5: x,y,z>0 tm xyz=1
Cm x^2\1+y +y^2\1+z + z^2\1+x
câu nào đúng và nào sai, sai sửa lại cho đúng
1. (a - b) ^2 > hoặc = 0 voi moi a b
2.(a - b) ^2 > 0 voi moi a b
3.gtri tuyet doi của x >0 voi moi x
4. gtri tuyet doi cua x> 0 voi moi x khac 0
5. căn x > hoặc = 0 voi moi x khac 0
6. căn x >0 voi moi x>0
7 căn x binh phuong = x voi moi x > hoặc = 0
1. Đ
2 S ( lớn hơn hoặc =.)
3S ( thêm hoặc =. vd x = 0)
4Đ
5S ( với mọi x >0)
6Đ
7Đ
cho B= 1\ 2(n-1)^2 +3 để tìm GTLN
a, x+2\327 + x+3\326 + x+4\325 + x+5\324 + x+349\5 =0
b, 2a+9\a+3 + 5a+17\a+3 - 3a\a+3 là số nguyên
a.
Ta có:
(x+2)/327+(x+3)/326+(x+4)/325+(x+5)/324+(x+349)/5=0
<=>(x+2)/327+(x+3)/326+(x+4)/325+(x+5)/324+(x+329)-4 (giải thích: (x+349)/5=(x+329+20)/5=(x+329)/5+4)
<=>1+(x+2)/327+1+(x+3)/326+1+(x+4)/325+1+(x+5)324+(x+329)/5=0
<=>(x+329)/327+(x+329)/326+(x+329)/325+(x+329)/324+(x+329)/5=0
<=>x+329(1/327+1/326+1/325+1/324+1/5)=0
Vì (1/327+...+1/5) khác 0 => x+329=0
=>x=-329
Voi moi so thuc x , cm : ( x-2).( x+3).( x +4).( x-6) +57 x2 > 0
bài 2 : thu gọn đa thức
a .(2a - b) . (b+ 4a) + 2a . (b-3a)
b . (3a - 2b) . (2a-3b) - 6a x (a-b)
c , 5b . (2x - b) - (8b-x) . (2x - b)
d , 2x . (a + 15x) + (x - 6a) . (5a + 2x)
a) \(\left(2a-b\right)\left(b+4a\right)+2a\left(b-3a\right)\)
\(=2ab+8a^2-b^2-4ab+2ab-6a^2\)
\(=\left(2ab+2ab-4ab\right)+\left(8a^2-6a^2\right)-b^2\)
\(=2a^2-b^2\)
b) \(\left(3a-2b\right).\left(2a-3b\right)-6a\left(a-b\right)\)
\(=6a^2-9ab-4ab+6b^2-6a^2+6ab\)
\(=\left(6a^2-6a^2\right)-\left(9ab+4ab-6ab\right)+6b^2\)
\(=-7ab+b^2\)
c) \(5b\left(2x-b\right)-\left(8b-x\right)\left(2x-b\right)\)
\(=10bx-5b^2-\left(16bx-8b^2-2x^2+bx\right)\)
\(=10bx-5b^2-16bx+8b^2+2x^2-bx\)
\(=\left(10bx-16bx-bx\right)-\left(5b^2-8b^2\right)+2x^2\)
\(=-7bx+3b^2+2x^2\)
d) \(2x\left(a+15x\right)+\left(x-6a\right)\left(5a+2x\right)\)
\(=2ax+30x^2+5ax+2x^2-30a^2-12ax\)
\(=\left(2ax+5ax-12ax\right)+\left(30x^2+2x^2\right)-30a^2\)
\(=-5ax+32x^2-30a^2\)
a: =2ab+8a^2-b^2-4ab+2ab-6a^2
=2a^2-b^2
b: =6a^2-9ab-4ab+6b^2-6a^2+6ab
=-7ab+6b^2
c: =10bx-5b^2-16bx+8b^2+2x^2-xb
=3b^2+2x^2-7xb
d: =2xa+30x^2+5ax+2x^2-30a^2-12ax
=32x^2-30a^2-5ax
Phân tích đa thức thành nhân tử (x+a)(x+2a)(x+3a)(x+4a)(x+5a) + a
1. rút gọn
a) ✔️2a^3/3a^3 vs a>0
b) ✔️13a x ✔️52/a vs a>0
c) ✔️5a x ✔️45a - 3a vs a>0
d) (3-a)^2 - ✔️0,2 x ✔️108a^2
Giải hộ mk vs
1/Cho 3a-b=5. Tính giá trị của \(A=\frac{5a-b}{2a+5}-\frac{3b-3a}{2b-5}\)Với 2a+5=0 và 2b-5 \(\ne\)0
2/Tìm số nguyên dương x để: P= \(x^4+x^2+1\) là số nguyên tố
Giai nhanh hộ mk nhé..mai nộp ạ
1 ) Do \(3a-b=5\Rightarrow b=3a-5\)
Ta có : \(A=\frac{5a-b}{2a+5}-\frac{3b-3a}{2b-5}=\frac{5a-3a+5}{2a+5}-\frac{3\left(3a-5\right)-3a}{2\left(3a-5\right)-5}=\frac{2a+5}{2a+5}-\frac{6a-15}{6a-15}=1-1=0\)
Vậy \(A=0\)
2 ) \(P=x^4+x^2+1=\left(x^4+2x^2+1\right)-x^2=\left(x^2+1\right)^2-x^2=\left(x^2-x+1\right)\left(x^2+x+1\right)\)
Để P là số nguyên tố thì \(Ư\left(P\right)=\left\{1;P\right\}\)
Vì x dương \(\Rightarrow x^2+x+1>x^2-x+1\)
\(\Rightarrow x^2-x+1=1\)
\(\Rightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(L\right)\\x=1\end{matrix}\right.\)
Vậy x = 1 thì P là số nguyên tố
Đơn giản các bt sau
(7x-4)×(2x+3)-13x
a^3-(a^2-3a) ×(a+3)
(2a-b) ×(b+4a) +2a×(b-3a)
5b×(2x-b) +(x-6a) ×(5a+2x )