Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
chi nguyễn khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2023 lúc 0:30

3:

x^2-2x+1-m^2<=0

=>(x-1)^2-m^2<=0

=>(x-1)^2<=m^2

=>-m<=x-1<=m

=>-m+1<=x<=m+1

mà x thuộc [-1;2]

nên -m+1>=-1 và m+1<=2

=>-m>=-2 và m<=1

=>m<=2 và m<=1

=>m<=1

Bùi Trần Duy Phát
19 tháng 3 lúc 23:19
Quang Nguyễn
Xem chi tiết
Thảo Nguyên
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 2 2021 lúc 22:45

1.

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\Delta=\left(m+1\right)^2-4m\left(m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\-3m^2+7m+1< 0\end{matrix}\right.\)

\(\Leftrightarrow m< \dfrac{7-\sqrt{61}}{6}\)

2.

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta'=4\left(m+1\right)^2-m\left(m-5\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\3m^2+13m+4\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\-4\le m\le-\dfrac{1}{3}\end{matrix}\right.\)

Không tồn tại m thỏa mãn

MINH KHÔI
Xem chi tiết

Với m=−1 thì PT f(x)=0 có nghiệm x=1 (chọn)

Với m≠−1 thì f(x) là đa thức bậc 2 ẩn x

f(x)=0 có nghiệm khi mà Δ′=m2−2m(m+1)≥0

⇔−m2−2m≥0⇔m(m+2)≤0

⇔−2≤m≤0

Tóm lại để f(x)=0 có nghiệm thì 

Khách vãng lai đã xóa
tu vương
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 3 2023 lúc 7:39

Để phương trình có nghiệm đúng với mọi x thì 

(2m)^2-4(m-2)(-m-2)<0 và m-2<0

=>4m^2+4(m^2-4)<0 và m<2

=>8m^2-16<0 và m<2

=>m^2<2

=>-căn 2<m<căn 2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 12 2017 lúc 9:22

Quyên Dũng
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 6 2017 lúc 12:06

Đáp án A

Phương pháp: Chia cả 2 vế cho 3x, đặt tìm điều kiện của t.

Đưa về bất phương trình dạng 

Cách giải :

Ta có 

Đặt khi đó phương trình trở thành

Ta có: 

Vậy 

Anhthu
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 3 2022 lúc 18:42

- Với \(m=-1\Rightarrow4< 0\) không thỏa mãn

- Với \(m\ne-1\) BPT nghiệm đúng với mọi x khi và chỉ khi:

\(\left\{{}\begin{matrix}m+1< 0\\\Delta'=\left(m+1\right)^2-4\left(m+1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\\left(m+1\right)\left(m-3\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\-1< m< 3\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu