Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hữu Phúc
Xem chi tiết
Đoàn Đức Hà
13 tháng 5 2022 lúc 11:07

\(3x^2y^3-A-5x^3y^2+B=8x^2y^3-4x^3y^2\)

\(\Leftrightarrow-A+B=5x^2y^3+x^3y^2\)

\(-6x^2y^3+C-3x^3y^2-D=2x^2y^3-7x^3y^2\)

\(\Leftrightarrow C-D=8x^2y^3-4x^3y^2\)

Do \(A\) và \(C\) đồng dạng nên \(A=-5x^2y^3,C=8x^2y^3\) suy ra \(B=x^3y^2,D=4x^3y^2\) hoặc \(A=-x^3y^2,C=-4x^3y^2\) suy ra \(B=5x^2y^3,D=-8x^2y^3\).

Nguyễn Khánh Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 2 2023 lúc 10:48

Chọn B

Phạm Đức Anh
Xem chi tiết
HT.Phong (9A5)
12 tháng 7 2023 lúc 9:51

a) \(x^2+2xy^3-3z+4xy-5xy^2+2xy-5z\)

\(=x^2+2xy^3-5xy^2-\left(3z+5z\right)+\left(4xy+2xy\right)\)

\(=x^2+2xy^3-5xy^2-8z+6xy\)

b) \(\left(x-3y\right)\left(x^2-3xy+9y^2\right)\)

\(=\left(x-3y\right)\left[x^2-x\cdot3y+\left(3y\right)^2\right]\)

\(=x^3-\left(3y\right)^3\)

\(=x^3-27y^3\)

c) \(\left(2x-y\right)\left(2x+y\right)\)

\(=\left(2x\right)^2-y^2\)

\(=4x^2-y^2\)

d) \(\left(3x-y\right)\left(2y+5\right)-16x4y\)

\(=6xy+15x-2y^2-5y-64xy\)

\(=-58xy+15x-2y^2-5y\)

Nguyễn Đức Trí
12 tháng 7 2023 lúc 9:51

Bạn xem lại đề bài nhé!

nguyễn biện thy thy
Xem chi tiết
Nguyễn Ngọc Anh Minh
12 tháng 12 2019 lúc 9:18

\(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\)

\(3x=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{3x}{6}=\frac{2y}{10}=\frac{z}{3}=\frac{3x+2y-z}{6+10-3}=\frac{26}{13}=2\)

\(\Rightarrow x=4;y=10;z=6\)

Khách vãng lai đã xóa
Duo Le
Xem chi tiết
Duo Le
12 tháng 10 2021 lúc 11:06

giúp mình vs mn ơi

 

ngochan123
Xem chi tiết
Yoo Hye Jung
Xem chi tiết
Nguyễn Đào Bảo Nhi
Xem chi tiết
Bui Huyen
24 tháng 7 2019 lúc 15:55

\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)

\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)

Bui Huyen
24 tháng 7 2019 lúc 15:59

\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}\)

áp dụng tính chất dãy tỉ số bằng nhau  ta có

\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}=\frac{2x-3y+4z}{1+-1-2}=\frac{48}{-2}=-24\)

\(\Rightarrow\hept{\begin{cases}x=-12\\y=-8\\z=-12\end{cases}}\)

Bui Huyen
24 tháng 7 2019 lúc 16:05

\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{x+y+z-6}{12}=\frac{24}{12}=2\)

\(\Leftrightarrow\hept{\begin{cases}x=7\\y=10\\z=13\end{cases}}\)

Nguyễn Hoàng Khánh Vy
Xem chi tiết
Nguyễn Kiều Anh
16 tháng 10 2014 lúc 23:15

a) =(x-y)*(x+y)-(5*(x+y))

=(x+y)*(x-y-5)

Mấy bài còn lại cũng tương tự nha bạn = cách đặt nhân tử chung 

bai nao khong hieu thi pan nhan tin vào nick minh minh se giai đùm ban

GV
17 tháng 10 2014 lúc 10:05

a) (x2 - y2) - 5(x + y)

= (x - y)(x + y) - 5 (x + y)

= (x + y) (x - y -5)

b) 5x3 - 5x2y - 10x2 + 10 xy

= 5[(x3 - x2y) - (2x2 - 2 xy)]

=5[x2(x - y) - 2x(x - y)]

=5x(x-y)(x - 2)

c) 2x2 - 5x = x(2x - 5)

d) x3 - 3x2 +1 - 3x 

= (x3 + 1) - (3x2 + 3x)

= (x + 1)(x- x + 1) - 3x(x + 1)

= (x + 1) [x2 - x + 1 - 3x]

= (x + 1)[x2 - 4x + 1]

= (x + 1)[x2 - 2.x.2 + 22 - 22 + 1]

= (x + 1)[(x - 2)2 - 3]

\(\left(x+1\right)\left(x-2+\sqrt{3}\right)\left(x-2-\sqrt{3}\right)\)

e) 3x2 - 6xy + 3y2 - 12z2

= 3[ x2 - 2xy + y2 - 4z2]

= 3[ (x - y)2 - (2z)2]

= 3(x - y + 2z)(x - y - 2z)

f) 3x2 - 7x - 10

= 3x2 - 7x - 7 - 3

= (3x2 -3) - (7x + 7)

= 3(x- 1) - 7(x + 1)

= 3 (x + 1)(x - 1) - 7(x + 1)

= (x + 1)[3(x - 1) - 7]

= (x +1)(3x - 8)

g) x4 + 1 - 2x2 = (x2)2 - 2.x2 + 1 = (x- 1)2

= (x + 1)2(x - 1)2

h) 3x2 - 3y2 - 12x + 12y

= 3(x- y2) - 12(x - y)

= 3(x - y)(x + y) - 12(x -y)

= (x - y) [3(x + y) - 12]

= (x - y). 3. (x+y - 4)

j) x2 - 3x + 2 = x2 - x - 2x +2

= x(x - 1) - 2(x -1)

=(x - 1)(x - 2)

Huy hoàng indonaca
29 tháng 7 2017 lúc 11:12

a) =(x-y)*(x+y)-(5*(x+y))

=(x+y)*(x-y-5)

Mấy bài còn lại cũng tương tự nha bạn = cách đặt nhân tử chung