Cho tam giác ABC vuông tại B có A = 60 độ. Vẽ đường phân giác AD (D thuộc BC). Qua D kẻ đường thẳng vuông góc với AC tại M và cắt đường thẳng AB tại N.
Chứng minh rằng: tam giác ABC đều và M là trung điểm của AC.
Cho tam giác ABC vuông tại B có Â = 60 độ . Gọi M là trung điểm của BC, qua M kẻ đường thẳng d vuông góc với đường thẳng phân giác của góc BAC tại N, d cắt AB và AC lần lượt tại E và F a. chứng minh rằng tam giác AEN = tam giác AFN b. tam giác AEF là tam giác gì ? vì sao c. so sánh độ dài 2 đoạn thẳng CM và CF
Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM ?
Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?
Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB). Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE
Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?
cho tam giác ABC vuông tại B ,có góc A =60 độ .vẽ đường phân giác AD ( D thuộc BC ) .Qua D dựng đường thẳng vuông góc với AC tại M và cắt AB tại N . gọi I là giao điểm của AD và BM . Chứng minh
a, tam giác BAD = tam giác MAD
b, AD là đường trung trực của đoạn thẳng BM
c, chứng minh điểm D cách đều ba đỉnh ba cạch của tam giác ACN
a) XÉT \(\Delta BAD\)VÀ \(\Delta MAD\)CÓ
\(\widehat{ABD}=\widehat{AMD}=90^o\)
\(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)
AD LÀ CẠNH CHUNG
=>\(\Delta BAD\)=\(\Delta MAD\)( CH-GN)
B) VÌ \(\Delta BAD\)=\(\Delta MAD\)(CMT)
\(\Rightarrow BA=MA\)HAI CẠNH TƯƠNG ỨNG
\(\Rightarrow\Delta ABM\) CÂN TẠI A
MÀ \(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)
=> AI LÀ PHÂN GIÁC CỦA \(\widehat{BAM}\)
MÀ TRONG TAM GIÁC CÂN TIA PHÂN GIÁC CŨNG LÀ ĐƯỜNG TRUNG TRỰC
=> AI LÀ ĐƯỜNG TRUNG TRỰC CỦA ĐỌAN BM
MÀ I NẰM TRÊN ĐỌAN AD
=> AD LÀ ĐƯỜNG TRUNG TRỰC CỦA ĐỌAN BM
C)
chứng minh DH=DB=DM
sao đó là mà D là điểm nằm trog tam giác acn
=> d cách đều các cạnh tam giác acn
Cho tam giác ABC vuông tại B có góc A = 60 độ vẽ đường phân giác AD qua D kẻ Đường Thẳng vuông góc vs AC tại M và cắt AB tại N. gọi I là giao của AD với BM
a) chúng minh tam giác BAD = tam giác MAD
b) AD là đường trung trực của BM
c) tam giác ANC đều
d) BI < ND
I ở đâu vậy ạ? Mấy câu trên thì bth mà sao sai cứ sai câu cuối nhở :(( trông chán thật sự.
a) Xét ΔABD vuông tại B và ΔAMD vuông tại M có
AD chung
\(\widehat{BAD}=\widehat{MAD}\)(AD là tia phân giác của \(\widehat{BAM}\))
Do đó: ΔABD=ΔAMD(cạnh huyền-góc nhọn)
Cho tam giác ABC vuoong cân tại C. AD là đường phân giác cảu tam giác ABC( D thuộc BC ). Gọi I là trung điểm của đoạn AD. Đường thẳng qua I và vuông góc với Ad cắt cạnh AC tại M và cắt cạnh BC kéo dài tại N.
a) Chứng minh: tam giac AIN = tam giác DIN
b)Chứng minh: AD > BC
c) Kẻ CE vuông góc với AB( E thuộc AB) đường thẳng CE cắt AD tại K.
Chứng minh rằng: 3 điểm B, K, M thẳng hàng
Cho tam giác ABC có 120oBAC , đường phân giác trong của góc A cắt BC tại D. Từ
D kẻ DE vuông góc với AB, DF vuông góc với AC.
a) Chứng minh △ADE = △ADF;
b) Chứng minh rằng tam giác DEF là tam giác đều;
c) Qua điểm C vẽ đường thẳng song song với AD, nó cắt đường thẳng AB tại M. Chứng
minh rằng tam giác ACM là tam giác đều.
Cho tam giác ABC vuông tại B có góc A = 60 độ vẽ đường phân giác AD qua D kẻ Đường Thẳng vuông góc vs AC tại M và cắt AB tại N. gọi I là giao của AD với BM
a) chúng minh tam giác BAD = tam giác MAD
b) AD là đường trung trực của BM
c) tam giác ANC đều
d) BI < ND
Cho ABC có . Vẽ đường phân giác AD (D BC). Qua D dựng đường thẳng vuông góc với AC tại M cắt đường thẳng AB tại N. Gọi I là giao điểm của AD và BM. a. Chứng minh BAD = MAD b. Chứng minh AD là trung trực của BM c. Chứng minh ANC là tam giác đều d. Chứng minh BI < ND
Đề bài có bị thiếu dữ kiện không bạn nhỉ???
Co ta giác ABC vuông tại A, có góc C=30 độ, đường phân giác BD (B thuộc AC). Qua D kẻ đường thẳn vuông góc với BC tại M và cắt tia BA tại E.
a) Chứng minh AB=BM.
B) Chứng minh tam giác BCD cân và M là trung điểm BC.
C) Qua M kẻ đường thẳng vuông góc với Ac và cắt tia BD tại F. Chứng minh rẳng C,F,E thẳng hàng
a. Xét hai tam giác vuông ABD và tam giác vuông MBD có
góc BAD = góc BMD = 90độ
cạnh BD chung
góc ABD = góc MBD
Do đó ; tam giác ABD= tam giác MBD [ cạnh huyền - góc nhọn ]
\(\Rightarrow\)AB = MB
b.Xét tam giác ABC ,có góc A = 90độ , góc C=30 độ
\(\Rightarrow\)góc B = 60 độ ,mà BD là tia phân giác của góc ABC
\(\Rightarrow\)\(\widehat{ABD}=\widehat{DBC}=30^O\)mà \(\widehat{C}=30^o\)\(\Rightarrow\widehat{DBC}=\widehat{DCB}=30^O\)
\(\Rightarrow\Delta BCD\)cân tại D
Ta có \(\Delta BDC\)cân tại D,\(DM\perp BC\)
\(\Rightarrow\)DM là đường trung tuyến của tam giác BDC
\(\Rightarrow\)BM=MC\(\Rightarrow\)M là trung điểm của BC
c,Xét tam giác ADE và tam giác MDC có
\(\widehat{ADE}=\widehat{MDC}\)\((\)đối đỉnh\()\)
\(\widehat{DAE}=\widehat{DMC}=90^O\)
AD=DM\((\)Từ tam giác BAD =tam giác BMD\()\)
Do đó \(\Delta ADE=\Delta MDC\)\((g.c.g)\)
\(\Rightarrow AE=MC\)\(\Rightarrow AE=BA=BM=MC\)
\(\Rightarrow BE=BC\)
\(Xét\Delta BEF\)và \(\Delta BCFcó\)
góc EBF = góc CBF
BF cạnh chung
BE=BC
Do đó tam giác BEF =tam giác BCF [c.g.c]
\(\Rightarrow\widehat{BFE}=\widehat{BFC}=90^O\)
\(\Rightarrow\widehat{EFC}=180^O\)\(\Rightarrow\)Ba điểm C,F,E thẳng hàng
Chúc bạn học tốt