Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dung Vu
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 5 2021 lúc 13:44

Câu 1:

Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)

Nguyễn Lê Phước Thịnh
5 tháng 5 2021 lúc 13:46

Câu 3: 

Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)

\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)

\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)

\(=\sqrt{a}\left(\sqrt{a}-2\right)\)

\(=a-2\sqrt{a}\)

Dung Vu
Xem chi tiết
ILoveMath
10 tháng 11 2021 lúc 14:34

a.\(A=\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{\left(x^2-4\right)\left(x-2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)

 

Nguyễn Hoàng Minh
10 tháng 11 2021 lúc 14:35

\(A=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}\left(x\ne\pm2\right)\\ A=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\\ B=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\left(x>0\right)\\ B=\dfrac{4\sqrt{x}\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

Tuyết Linh Linh
Xem chi tiết
Akai Haruma
2 tháng 3 2021 lúc 20:22

Lời giải:

a) ĐK: $x\geq 0; y\geq 0; x\neq y$

\(A=\left[\frac{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}{\sqrt{x}-\sqrt{y}}-\frac{(\sqrt{x}-\sqrt{y})(x+\sqrt{xy}+y)}{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}\right]:\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)

\(=\left(\sqrt{x}+\sqrt{y}-\frac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right).\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(=\frac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}.\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\)

b) \(1-A=\frac{(\sqrt{x}-\sqrt{y})^2}{x-\sqrt{xy}+y}>0\) với mọi $x\neq y; x,y\geq 0$

$\Rightarrow A< 1$

 

Gon
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 3 2021 lúc 21:57

Ta có: \(\dfrac{x+\sqrt{x}+10}{x-9}-\dfrac{1}{\sqrt{x}-3}:\dfrac{\sqrt{x}-3}{1}\)

\(=\dfrac{\left(x+\sqrt{x}+10\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)^2\cdot\left(\sqrt{x}+3\right)}-\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-3\right)^2\cdot\left(\sqrt{x}+3\right)}\)

\(=\dfrac{x\sqrt{x}-3x+x-3\sqrt{x}+10\sqrt{x}-30-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-3\right)^2}\)

\(=\dfrac{x\sqrt{x}-2\sqrt{x}+6\sqrt{x}-33}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)^2}\)

Tran Nguyen Linh Chi
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 10 2021 lúc 0:16

\(E=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{x\sqrt{x}-1}\right)\cdot\dfrac{3\sqrt{x}-3}{x+\sqrt{x}}\)

\(=\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{3\left(\sqrt{x}-1\right)}{x+\sqrt{x}}\)

\(=\dfrac{3}{\sqrt{x}}\)

Sun ...
Xem chi tiết
Đặng Phương Linh
19 tháng 7 2023 lúc 10:59

\(=\dfrac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{3-\sqrt{x}}{x-1}\\ =\dfrac{2x-3\sqrt{x}+2\sqrt{x}-3+3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2x-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)

HT.Phong (9A5)
19 tháng 7 2023 lúc 11:00
Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 11 2021 lúc 14:52

\(a,C=\dfrac{2x^2-x-x-1+2-x^2}{x-1}\left(x\ne1\right)\\ C=\dfrac{x^2-2x+1}{x-1}=\dfrac{\left(x-1\right)^2}{x-1}=x-1\\ b,D=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\left(a>0;a\ne1\right)\\ D=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

Có 

Thơ Nụ =))
Xem chi tiết

ĐKXĐ: \(x\notin\left\{1;\dfrac{1}{2}\right\}\)

\(\left(\dfrac{1}{x-1}+2+\dfrac{2x^3+x^2-x}{1-x^3}\right):\dfrac{1-2x}{x^3+x-2}\)

\(=\left(\dfrac{1}{x-1}+2-\dfrac{2x^3+x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}\right)\cdot\dfrac{x^3+x-2}{1-2x}\)

\(=\dfrac{x^2+x+1+2\left(x^3-1\right)-2x^3-x^2+x}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^3-x^2+x^2-x+2x-2}{-\left(2x-1\right)}\)

\(=\dfrac{2x+1+2x^3-2-2x^3}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x^2+x+2\right)}{-\left(2x-1\right)}\)

\(=\dfrac{2x-1}{x^2+x+1}\cdot\dfrac{-\left(x^2+x+2\right)}{2x-1}=\dfrac{-x^2-x-2}{x^2+x+1}\)

Trung123
Xem chi tiết
HaNa
24 tháng 8 2023 lúc 7:43

ĐK: \(x\ne0;x\ne3\)

Khi đó:

\(\dfrac{1}{x}+\dfrac{2}{x-3}-\dfrac{6}{x^2-3x}\\ =\dfrac{1\left(x-3\right)}{x\left(x-3\right)}+\dfrac{2.x}{x\left(x-3\right)}-\dfrac{6}{x\left(x-3\right)}\\ =\dfrac{x-3+2x-6}{x\left(x-3\right)}\\ =\dfrac{3x-9}{x\left(x-3\right)}\\ =\dfrac{3\left(x-3\right)}{x\left(x-3\right)}\\ =\dfrac{3}{x}\)