Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Ngọc Huy Hoàng
Xem chi tiết
Phạm Ngọc Huy Hoàng
1 tháng 12 2016 lúc 21:41

ai trả lời nhanh thì tôi k cho nhiều nhất

Trần Ly Ly
Xem chi tiết
Nguyễn Huy Hùng
28 tháng 1 2016 lúc 20:12

a=(1-3+3^2-3^3)+(3^4-3^5...+(3^96-3^97+3^98-3^99)

a=(1-3+3^2-3^3)+3^4x(1-3+3^2-3^3)+...+3^96x(1-3+3^2-3^3)

a=(-20)+3^4x(-20)+...+3^96x(-20)

a=(-20)+(3^4+3^8+...+3^96)

vi-20chia het cho 4=>achia hetcho 4

Nguyễn Huy Hùng
28 tháng 1 2016 lúc 20:11

a=(1-3+3^2-3^3)+(3^4-3^5...+(3^96-3^97+3^98-3^99)

a=(1-3+3^2-3^3)+3^4x(1-3+3^2-3^3)+...+3^96x(1-3+3^2-3^3)

a=(-20)+3^4x(-20)+...+3^96x(-20)

a=(-20)+(3^4+3^8+...+3^96)

vi-20chia het cho 4=>achia hetcho 4

tick mk nha

Feliks Zemdegs
Xem chi tiết
Trần Thị Loan
13 tháng 8 2015 lúc 19:09

Gỉa sử tồn tại số tự nhiên n để 2010- 1 chia hết cho 1010- 1

Vì 2010 chia hết cho 3 nên 2010n chia hết cho 3 => 2010- 1 không chia hết cho 3  => 1010- 1 không chia hết cho 3

Mà  1010 đồng dư với -1 ( mod 3) => 1010n  - 1 đồng dư với (-1)- 1 (mod 3)  => (-1)n - 1 khác 0 => n lẻ 

+) Vì 1010n - 1 chia hết cho 1010 - 1 = 1009 nên 2010- 1 chia hết cho 1009 Hay 2010n đồng dư với 1 ( mod 1009)

Gọi k là số nguyên dương nhỏ nhất mà 2010k đồng dư với 1 ( mod 1009) => n chia hết cho k Mà n lẻ nên k lẻ

+) Ta lại có: 1009 là số nguyên tố và  nguyên tố cùng nhau với 2010. Theo ĐL Fermat nhỏ có: 20101008 đồng dư với 1 (mod 1009)

Vì k là số nguyên dương nhỏ nhất để 2010k đồng dư với 1 ( mod 1009) nên k là ước của 1008

1008 = 24.32. 7 Mà k lẻ nên k có thể bằng 3;7;9;21;27; 63

Thử các giá trị của k

Vì 2010 đồng dư với -8 (mod 1009) nên 20103 đồng dư với -512 (mod 1009) => Loại k = 3

tương tự với k = 7; 9 => Loại

20109 đồng dư với 8(mod 1009) ; 89 đồng dư với 548 (mod 1009)

=> 201027 đồng dư với 5483 ( mod 1009); 5483 đồng dư với 710 ( mod 1009)

=> k = 27 Loại

Làm tương tự với k = 63 => Loại

Vậy không có giá trị nào của k thỏa mãn y/c => điều giả sử sai

=> Không tồn tại số tự nhiên n thỏa mãn y/ c

lukaku bình dương
Xem chi tiết
HT.Phong (9A5)
10 tháng 8 2023 lúc 9:21

a) Ta có: \(10^{10}=10...0\) nên \(10^{10}-1=10...0-1=99...9\)

Nên: \(10^{10}-1⋮9\)

b) Ta có: \(10^{10}=10...0\) nên: \(10^{10}+2=10...0+2=10...2\)

Mà: \(1+0+...+2=3\)

Nên: \(10^{10}+2⋮3\)

c) Gọi số chẵn đó \(a\) số chẵn tiếp theo là:\(a+2\)

Mà tổng của 2 số chẵn đó là:

\(a+a+2=2a+2=2\left(a+1\right)\) không chia hết cho 4 nên 

Tổng của 2 số chẵn liên tiêp ko chia hết cho 4

HT.Phong (9A5)
10 tháng 8 2023 lúc 9:28

d) Gọi hai số tự nhiên đó là: \(a,a+1\)

Tích của 2 số tự nhiên đó là:

\(a\left(a+1\right)=a^2+a\) 

Nếu a là số lẻ thì \(a^2\) lẻ nên \(a^2+a\) là chẳn

Nếu a là số chẵn thì \(a^2\) chẵn nên \(a^2+a\) là chẵn 

Vậy tích của hai số liên tiếp là chẵn

e) Gọi hai số đó là: \(2a,2a+2\)

Tích của hai số đó là:

\(2a\cdot\left(2a+2\right)=4a^2+4a=4a\left(a+1\right)\) 

4a(a+1) chia hết cho 8 nên

Tích của hai số tự nhiên liên tiếp chia hết cho 8

Gấuu
10 tháng 8 2023 lúc 9:30

d) Gọi một số tự nhiên bất kỳ là a 

\(\Rightarrow\) Số tự nhiên liền kề là a+1

Nếu a là số lẻ thì a+1 là số chẵn

\(\Rightarrow a\left(a+1\right)\) là số chẵn

Nếu a là số chẵn thì \(a\left(a+1\right)\) là số chẵn 

Vậy tích hai số TN liên tiếp bao giờ cũng là một số chẵn

e) Gọi hai số chẵn liên tiếp lần lượt là 2a và 2a+2 ( a là một số TN bất kỳ )

Ta có \(2a\left(2a+2\right)=2a.2\left(a+1\right)=4a\left(a+1\right)\)

Ta chứng minh được tích hai số TN liên tiếp bao giờ cũng là một số chẵn

\(\Rightarrow a\left(a+1\right)\) có dạng 2k ( k bất kỳ )

\(\Rightarrow2a\left(2a+2\right)=8k⋮8\) 

Vậy tích hai số chẵn liên tiếp chia hết cho 8

tuyết lang
Xem chi tiết
Lê Dung
Xem chi tiết
Nguyễn Thu Huyền
18 tháng 1 2015 lúc 20:29

*Một số tn bất kỳ khi chia cho 2015 có số dư là 1 trong 2014 số :.....

*Sau đó ta chia 1010 thành 1009 nhóm

*Theo nguyên lý Dirichlet ta có 2 trường hợp

Ta có ĐPCM

Đặng Ngọc Thiện
8 tháng 7 2015 lúc 17:53

Giả sử 6 số đó tồn tại 1 cặp có cùng tận cùng (Ví dụ 1236, 26), vậy hiệu chia hết cho 5. Thỏa mãn

Giả sử không có cặp số nào cùng tận cùng, vậy các chữ số tận cùng có thể là: 1, 2, 3, 4, 6, 7, 8, 9

Các cặp có hiệu chia hết cho 5 là: 6 - 1, 7 - 2, 8 -3, 9 - 4, nếu bỏ đi 2 số bất kỳ vẫn tồn tại 2 cặp có hiệu chia hết cho 5. CM xong!

Chờ thị trấn
Xem chi tiết
Nguyễn Hoàng Minh
26 tháng 10 2021 lúc 9:00

\(bx^2=ay^2\Leftrightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}\Leftrightarrow\left(\dfrac{x^2}{a}\right)^{1010}=\left(\dfrac{y^2}{b}\right)^{1010}\\ \Leftrightarrow\dfrac{x^{2020}}{a^{1010}}=\dfrac{y^{2020}}{a^{1010}}\)

Áp dụng t/c dtsbn:

\(\dfrac{x^{2020}}{a^{1010}}=\dfrac{y^{2020}}{b^{1010}}=\dfrac{x^{2020}+y^{2020}}{a^{1010}+b^{1010}}\left(3\right)\)

Đặt \(\dfrac{x^2}{a}=\dfrac{y^2}{b}=k\Leftrightarrow x^2=ak;y^2=bk\)

\(x^2+y^2=1\Leftrightarrow ak+bk=1\Leftrightarrow k\left(a+b\right)=1\Leftrightarrow a+b=\dfrac{1}{k}\)

\(\Leftrightarrow\dfrac{2}{\left(a+b\right)^{1010}}=\dfrac{2}{\left(\dfrac{1}{k}\right)^{1010}}=2:\dfrac{1}{k^{1010}}=k^{1010}\left(1\right)\)

Mà \(\dfrac{x^{2020}}{a^{1010}}=\dfrac{\left(x^2\right)^{1010}}{a^{1010}}=\dfrac{a^{1010}k^{1010}}{a^{1010}}=k^{1010}\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\) ta được đpcm

Trần Tiến Đạt
Xem chi tiết
ONLINE SWORD ART
Xem chi tiết
Nguyen thi bích ngọc
Xem chi tiết