Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Chờ thị trấn

Cho x^2+y^2=1 và b.x^2=a.y^2.Chứng minh rằng x^2020/a^1010+y^2020/b^1010=2/(a+b)^1010

Nguyễn Hoàng Minh
26 tháng 10 2021 lúc 9:00

\(bx^2=ay^2\Leftrightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}\Leftrightarrow\left(\dfrac{x^2}{a}\right)^{1010}=\left(\dfrac{y^2}{b}\right)^{1010}\\ \Leftrightarrow\dfrac{x^{2020}}{a^{1010}}=\dfrac{y^{2020}}{a^{1010}}\)

Áp dụng t/c dtsbn:

\(\dfrac{x^{2020}}{a^{1010}}=\dfrac{y^{2020}}{b^{1010}}=\dfrac{x^{2020}+y^{2020}}{a^{1010}+b^{1010}}\left(3\right)\)

Đặt \(\dfrac{x^2}{a}=\dfrac{y^2}{b}=k\Leftrightarrow x^2=ak;y^2=bk\)

\(x^2+y^2=1\Leftrightarrow ak+bk=1\Leftrightarrow k\left(a+b\right)=1\Leftrightarrow a+b=\dfrac{1}{k}\)

\(\Leftrightarrow\dfrac{2}{\left(a+b\right)^{1010}}=\dfrac{2}{\left(\dfrac{1}{k}\right)^{1010}}=2:\dfrac{1}{k^{1010}}=k^{1010}\left(1\right)\)

Mà \(\dfrac{x^{2020}}{a^{1010}}=\dfrac{\left(x^2\right)^{1010}}{a^{1010}}=\dfrac{a^{1010}k^{1010}}{a^{1010}}=k^{1010}\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\) ta được đpcm


Các câu hỏi tương tự
Nguyễn Minh Châu
Xem chi tiết
Trần Tiến Đạt
Xem chi tiết
khanhngoccony
Xem chi tiết
nguyenthiduchien
Xem chi tiết
Không có tên
Xem chi tiết
Gorilla TV
Xem chi tiết
Lại Văn Định
Xem chi tiết
Vân Sarah
Xem chi tiết
Bibi Quỳnh
Xem chi tiết