Cho A =3/2^2+8/3^2+15/4^2+…+2023^2-1/2023^2
Chứng minh A không phải là số tự nhiên
Chứng minh A không phải là số tự nhiên
ai giup e với ạ e like cho !
= 3/(2 ^ 2) + 8/(3 ^ 2) + 15/(4 ^ 2) +...+ 2023^ 2 -1 2023^ 2 Chứng minh rằng giả trị của A không phải là một tự nhiên
\(A=\dfrac{3}{2^2}+\dfrac{8}{3^2}+\dfrac{15}{4^2}+...+\dfrac{2023^2-1}{2023^2}\)
\(A=\dfrac{2^2-1}{2^2}+\dfrac{3^2-1}{3^2}+\dfrac{4^2-1}{4^2}+...+\dfrac{2023^2-1}{2023^2}\)
\(A=1-\dfrac{1}{2^2}+1-\dfrac{1}{3^2}+1-\dfrac{1}{4^2}+...+1-\dfrac{1}{2023^2}\)
\(A=(1+1+1+...+1)-(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+..+\dfrac{1}{2023^2})\)
Tổng số hạng của 2 ngoặc trên bằng nhau và =(2023-2):1+1=2022(số hạng)
\(A=2022-(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2023^2})\)
Ta thấy:
\(0<\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2023^2}<\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+..+\dfrac{1}{2022.2023}\)
Ta có
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+..+\dfrac{1}{2022.2023}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+..+\dfrac{1}{2022}-\dfrac{1}{2023}\)
\(=1-\dfrac{1}{2023}<1\)
Do đó,2021<A<2022
Vậy giá trị của A không phải 1 số tự nhiên(đpcm)
cho A= 3/2^2+8/3^3+15/4^2+......+2023^2-1/2023^2 chứng minh rằng biểu thức a có giá trị là một số tự nhiên
cho A=3/2^2 + 8/3^2 + 15/4^2 +.....+ 2023^2-1/2023^2. CMR biểu thức A có giá trị ko phải là một số tự nhiên
322+832+1542+....+20232-120232"" id="MathJax-Element-1-Frame" role="presentation" tabindex="0" style="box-sizing: inherit; display: inline-table; line-height: 0; font-size: 18.08px; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;">A=322+832+1542+....+20232−120232�=322+832+1542+....+20232-120232A=
1-122+1-132+1-142+....+1-120232"" id="MathJax-Element-2-Frame" role="presentation" tabindex="0" style="box-sizing: inherit; display: inline-block; line-height: 0; font-size: 18.08px; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;">A=1−122+1−132+1−1(2+....+1)120232�=1-122+1-132+1-142+....+1-1202321+12+13+...+122023−1
2022-(122+132+142+...+120232)"" id="MathJax-Element-3-Frame" role="presentation" tabindex="0" style="box-sizing: inherit; display: inline-block; line-height: 0; font-size: 18.08px; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;">A=2022−(122+132+142+...+120232)�=2022-(122+132+142+...+120232)A
122+132+142+.... <20232
Cho A= 1 +2^2+2^4+2^6+...+2^2023 và B =2^2023. Chứng minh 3 nhân A và 2 nhân B là hai số tự nhiên liên tiếp. (Lưu ý: ^ là số mũ)
Sửa đề: \(A=1+2^2+2^4+...+2^{2022}\)
\(\Leftrightarrow4\cdot A=2^2+2^4+2^6+...+2^{2024}\)
=>\(4A-A=2^2+2^4+...+2^{2024}-1-2^2-...-2^{2022}\)
=>\(3A=2^{2024}-1\)
mà \(2\cdot B=2^{2024}\)
nên 3A và 2B là hai số tự nhiên liên tiếp
\(\text{cho M = 1 2 3 + 2 3 3 + 3 4 3 + . . . + 2021 2022 3 + 2022 2023 3 . Chứng tỏ rằng giá trị của M không phải là một số tự nhiên}\)
cho \(M=\dfrac{1}{2^3}+\dfrac{2}{3^3}+\dfrac{3}{4^3}+...+\dfrac{2021}{2022^3}+\dfrac{2022}{2023^3}\). Chứng tỏ rằng giá trị của M không phải là một số tự nhiên
A=3/2^2+8/3^2+15/4^2+2023^2-1/2023^2 chung minh a ko phai la so tn
cho \(M=\dfrac{1}{2^3}+\dfrac{2}{3^3}+\dfrac{3}{4^3}+...+\dfrac{2021}{2022^3}+\dfrac{2022}{2023^3}\) chứng minh rằng giá trị của M không phải là một số tự nhiên
gấp =) !
Ta có thể viết lại M dưới dạng:
M = (1/2³) + (2/3³ - 1/2³) + (3/4³ - 2/3³) + … + (2022/2023³ - 2021/2022³)
= (1/2³) + [(2/3³ - 1/2³) + (3/4³ - 2/3³)] + … + [(2022/2023³ - 2021/2022³) + (2023/2024³ - 2022/2023³)]
= (1/2³) + (1/3³ - 1/2³) + … + (1/2023³ - 1/2022³)
= 1/2³ + (1/2³ - 1/3³) + (1/3³ - 1/4³) + … + (1/2022³ - 1/2023³)
Ta sử dụng kết quả sau đây: Với mọi số nguyên dương n, ta có
1/n³ > 1/(n+1)³
Điều này có thể được chứng minh bằng cách sử dụng đạo hàm hoặc khai triển. Do đó,
1/2³ > 1/3³
1/3³ > 1/4³
…
1/2022³ > 1/2023³
Vậy ta có
M = 1/2³ + (1/2³ - 1/3³) + (1/3³ - 1/4³) + … + (1/2022³ - 1/2023³) < 1/2³ + 1/3³ + 1/4³ + … + 1/2023³
Để chứng minh rằng M không phải là một số tự nhiên, ta sẽ chứng minh rằng tổng các số mũ ba nghịch đảo từ 1 đến 2023 không phải là một số tự nhiên. Điều này có thể được chứng minh bằng phương pháp giả sử ngược lại và dẫn đến mâu thuẫn.
Giả sử tổng các số mũ ba nghịch đảo từ 1 đến 2023 là một số tự nhiên, ký hiệu là S. Ta có:
S = 1/1³ + 1/2³ + 1/3³ + … + 1/2023³
Với mọi số nguyên dương n, ta có:
1/n³ < 1/n(n-1)
Do đó,
1/1³ < 1/(1x2)
1/2³ < 1/(2x3)
1/3³ < 1/(3x4)
...
1/2023³ < 1/(2023x2024)
Tổng các số hạng bên phải có thể được viết lại dưới dạng:
1/(1x2) + 1/(2x3) + 1/(3x4) + … + 1/(2023x2024) = (1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + … + (1/2023 - 1/2024) = 1 - 1/2024 < 1
Vậy tổng các số mũ ba nghịch đảo từ 1 đến 2023 cũng nhỏ hơn 1. Điều này mâu thuẫn với giả sử ban đầu rằng tổng này là một số tự nhiên. Do đó, giá trị của M không phải là một số tự nhiên.