cho \(M=\dfrac{1}{2^3}+\dfrac{2}{3^3}+\dfrac{3}{4^3}+...+\dfrac{2021}{2022^3}+\dfrac{2022}{2023^3}\) chứng minh rằng giá trị của M không phải là một số tự nhiên
gấp =) !
A = \(\dfrac{2022}{2021^{2^{ }}+1}\) + \(\dfrac{2022}{2021^{2^{ }}+2}\) + \(\dfrac{2022}{2021^2+3}\) + ... + \(\dfrac{2022}{2021^{2^{ }}+2021}\)
Chứng tỏ rằng A không phải số tự nhiên
\(\text{cho M = 1 2 3 + 2 3 3 + 3 4 3 + . . . + 2021 2022 3 + 2022 2023 3 . Chứng tỏ rằng giá trị của M không phải là một số tự nhiên}\)
2/3^3+3/4^3+4/5^3+...+2021/2022^3+2022/2023^3 Chứng tỏ rằng giá trị này không phải là số tự nhiên
\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}}{\dfrac{2022}{1}+\dfrac{2021}{2}+\dfrac{2020}{3}+...+\dfrac{1}{2022}}\)
Tìm x, biết:
( \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) + ... + \(\dfrac{1}{2023}\) ) . x = \(\dfrac{2022}{1}\) + \(\dfrac{2021}{2}\) + \(\dfrac{2020}{3}\)
+ ... + \(\dfrac{1}{2022}\)
T=\(\dfrac{2}{2}+\dfrac{3}{2^2}+\dfrac{4}{2^3}+...+\dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\) so sánh với 3
\(t=\dfrac{1}{2^1}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2021}{2^{2021}}+\dfrac{2022}{2^{2022}}\)
CHỨNG TỎ T < 2
1)chứng tỏ rằng A =\(\dfrac{2^{2021}+3^{2021}}{2^{2022}+3^{2022}}\) là một phân số tối giản
2)cho 3 só nguyên tố lớn hơn 3, trong đó số sau lớn hơn số trước là d đơn vị.chứng minh d chia hết cho 6