3^x + 3 ^x+1 + 3^x+2= 243
a) 32x-1= 243 b) (3x)2 :33= 1/243
c) 23x+2= 4x+5 d) 3x+1= 9x
a) \(3^{2x-1}=243\)
\(\Leftrightarrow3^{2x-1}=3^5\)
\(\Leftrightarrow2x-1=5\)
\(\Leftrightarrow2x=5+1\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=\dfrac{6}{2}\)
\(\Leftrightarrow x=3\)
Vậy \(x=3\)
b) \(\left(3^x\right)^2:3^3=\dfrac{1}{243}\)
\(\Leftrightarrow3^{2x}:3^3=\dfrac{1}{3^5}\)
\(\Leftrightarrow3^{2x}:3^3=3^{-5}\)
\(\Leftrightarrow3^{2x-3}=3^{-5}\)
\(\Leftrightarrow2x-3=-5\)
\(\Leftrightarrow2x=-5+3\)
\(\Leftrightarrow2x=-2\)
\(\Leftrightarrow x=-\dfrac{2}{2}\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)
c) \(2^{3x+2}=4^{x+5}\)
\(\Leftrightarrow2^{3x+2}=\left(2^2\right)^{x+5}\)
\(\Leftrightarrow2^{3x+2}=2^{2\left(x+5\right)}\)
\(\Leftrightarrow3x+2=2\left(x+5\right)\)
\(\Leftrightarrow3x+2=2x+10\)
\(\Leftrightarrow3x-2x=10-2\)
\(\Leftrightarrow x=8\)
Vậy \(x=8\)
d) \(3^{x+1}=9^x\)
\(\Leftrightarrow3^{x+1}=\left(3^2\right)^x\)
\(\Leftrightarrow3^{x+1}=3^{2x}\)
\(\Leftrightarrow x+1=2x\)
\(\Leftrightarrow2x-x=1\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)
Tìm x biết
a) 27< 3\(^x\) < 243
b) 2\(^x\) + 2\(^{x+1}\) + 2\(^{x+1}\) + 2\(^{x+2}\) =56
c) 3\(^x\) + 3\(^{x+2}\) =810
`#3107.101107`
a)
\(27< 3^x< 243\\ \Rightarrow3^3< 3^x< 3^5\\ \Rightarrow3< x< 5\\ \Rightarrow x=4\)
Vậy, `x = 4`
b)
\(2^x+2^{x+1}+2^{x+2}=56?\\ \Rightarrow2^x+2^x\cdot2+2^x\cdot4=56\\ \Rightarrow2^x\cdot\left(1+2+4\right)=56\\ \Rightarrow2^x\cdot7=56\\ \Rightarrow2^x=8\\ \Rightarrow2^x=2^3\\ \Rightarrow x=3\)
Vậy, `x = 3`
c)
\(3^x+3^{x+2}=810\\ \Rightarrow3^x+3^x\cdot9=810\\ \Rightarrow3^x\cdot\left(1+9\right)=810\\ \Rightarrow3^x\cdot10=810\\ \Rightarrow3^x=81\\ \Rightarrow3^x=3^4\\ \Rightarrow x=4\)
Vậy, `x = 4.`
a) \(27< 3^x< 243\)
\(\Rightarrow3^3< 3^x< 3^5\)
\(\Rightarrow3< x< 5\)
c) \(3^x+3^{x+2}=810\)
\(\Rightarrow3^x\left(1+3^2\right)=810\)
\(\Rightarrow3^x.10=810\)
\(\Rightarrow3^x=810:10\)
\(\Rightarrow3^x=81\)
\(\Rightarrow3^x=3^4\)
\(\Rightarrow x=4\)
(1/3)^x.(1/3)^x-2=10/243
3 mũ x+1 +3 mũ 2=243 tìm x
\(\Leftrightarrow3^x\cdot3=243\)
hay x=4
bài 8: a, 3^2 x 1/243 x 81^2 x 1/3^3
b, (4.2^5) : (2^3 x 1/16)
\(8;a,3^2.\frac{1}{243}.81^2.\frac{1}{3^3}\)
\(=\frac{3^2.\left(3^4\right)^2}{243.3^3}\)
\(=\frac{3^2.3^8}{3^5.3^3}\)
\(=\frac{3^{10}}{3^8}=3^2=9\)
\(b,\frac{4.2^5}{2^3.\frac{1}{16}}\)
\(=\frac{2^2.2^5}{2^3.\frac{1}{2^4}}\)
\(=\frac{2^7}{\frac{1}{2}}=2^7.2=2^8\)
a, \(3^2.\frac{1}{243}.81^2.\frac{1}{3}^3\)
\(=3^2.\frac{1}{243}.\left(3^4\right)^2.\frac{1}{27}\)
\(=3^2.\frac{1}{243}.3^8.\frac{1}{27}\)
\(=\frac{3^2.3^8}{243.27}\)
\(=\frac{3^2.3^8}{3^5.3^3}\)
\(=\frac{3^{10}}{3^8}=3^2=9\)
b, \(\left(4.2^5\right):\left(2^3.\frac{1}{16}\right)\)
\(=\left(2^2.2^5\right):\left(8.\frac{1}{16}\right)\)
\(=2^7:\frac{1}{2}\)
\(=2^8\)
(3^x)^2 : 3^3=1/243
tìm x
(3^x)^2=1/243.3^3
(3^x)^2=1/9
3x=1/3 hoặc 3x=-1/3
Suy ra x=1/9 hoặc x=-1/9
Tìm x,y biết:
1) 3^X-1 = 1/243
2) 81^-2X x 27^X=9^5
3) ( x-y+3)^2 + (y-1)^2=0
1/ 6^x-3=1
2/ 5^x-2=125
3/ 5^x-2=25
4/ 3^x+4=243
tìm x biết :
\(3^x+3^{x+1}+3^{x+2}=243\cdot39\)
3x( 1 + 3 + 32) = 36.13
3x. 13 = 36.13
=> 3x= 36
=> x= 6