Tìm x
3+2x-1= 24-[ 42 -(22-1)]
3+2x-1=24-[42-(22-1)]
\(3+2^{x-1}=24-\left[4^2-\left(2^2-1\right)\right]\)
\(\Leftrightarrow2^{x-1}=24-16+3-3\)
\(\Leftrightarrow x-1=3\)
hay x=4
\(3+2^{x-1}=24-\left[4^2-\left(2^2-1\right)\right]\)
<=> \(3+2^{x-1}=11\)
<=> \(2^{x-1}=8\)
<=> \(2^{x-1}=2^3\)
<=> x - 1 = 3
<=> x = 4
`3 + 2^(x-1)=24-[4^2-(2^2-1)]`
`=> 3+2^(x-1)=24-[16-(4-1)]`
`=>3+2^(x-1)=24-[16-3]`
`=> 3+2^(x-1)=24-13`
`=> 3+2^(x-1)=11`
`=> 2^(x-1)=11-3`
`=> 2^(x-1)=8`
`=> 2^(x-1)=2^3`
`=> x-1=3`
`=> x=3+1`
`=> x=4`
Vậy `x=4`
a) 3+2x-1 = 24 - [ 42-(22-1) ]
b) (19x+2.52):14 = (13-8)2-42
a) 3+2x-1 = 24 - [ 42-(22-1) ]
b) (19x+2.52):14 = (13-8)2 - 42
\(a,\Rightarrow2^{x-1}=24-\left(16-3\right)-3\\ \Rightarrow2^{x-1}=24-13-3\\ \Rightarrow2^{x-1}=8=2^3\\ \Rightarrow x-1=3\Rightarrow x=4\\ b,\Rightarrow\left(19x+50\right):14=25-16=9\\ \Rightarrow19x+50=126\\ \Rightarrow x=4\)
3+2x-1=24-[42-(22-1)]
tìm x
3 + 2x - 1= 24 - [42 - (22 - 1)
3 + 2x - 1= 24 - [42 - 21]
3 + 2x - 1= 24 - 21
3 + 2x - 1= 3
3 + 2x = 3 + 1
3 + 2x = 4
2x = 4 - 3
2x =1
x = 1:2
x = 0,5
Vậy x = 0,5
3 + 2x - 1= 24 - [42 - (22 - 1)
3 + 2x - 1= 24 - [42 - 21]
3 + 2x - 1= 24 - 21
3 + 2x - 1= 3
3 + 2x = 3 + 1
3 + 2x = 4
2x = 4 - 3
2x =1
x = 1:2
x = 0,5
suy ra x = 0,5
3+2x-1=24-[42-(22-1)]
3+2x-1=24-(42-21)
3+2x-1=24-21
3+2x-1=3
3+2x=3+1
3+2x=4
2x=4-3
2x=1
x=1:2
x=0,5
Bài 1: Khai triển các hằng đẳng thức.
1,(x+1)2
2,(2x+1)2
3, (2x+y)2
4, (2x+3)2
5, ( 3x+2y)2
6, (2x2+1)2
7, (x3+1)2
8, (x2+y3)2
9, ( x2+2y2)2
10, (1/2x+1/3y)2
1) \(\left(x+1\right)^2=x^2+2x+1\)
2) \(\left(2x+1\right)^2=4x^2+4x+1\)
3) \(\left(2x+y\right)^2=4x^2+4xy+y^2\)
4) \(\left(2x+3\right)^2=4x^2+12x+9\)
5) \(\left(3x+2y\right)^2=9x^2+12xy+4y^2\)
6) \(\left(2x^2+1\right)^2=4x^4+4x^2+1\)
7) \(\left(x^3+1\right)^2=x^6+2x^3+1\)
8) \(\left(x^2+y^3\right)^2=x^4+2x^2y^3+y^6\)
9) \(\left(x^2+2y^2\right)^2=x^4+4x^2y^2+4y^4\)
10) \(\left(\dfrac{1}{2}x+\dfrac{1}{3}y\right)^2=\dfrac{1}{4}x^2+\dfrac{1}{3}xy+\dfrac{1}{9}y^2\)
bài 7 tìm x
3,(x+1)=(x+1) 4,x(2x-3)-2(3-2x)=0
6,
3: =>x(x+1)=0
=>x=0 hoặc x=-1
4: =>(2x-3)(x+2)=0
=>x=3/2 hoặc x=-2
6: =>6x=7 hoặc 6x=-7
=>x=7/6 hoặc x==7/6
Rút gọn:
1) x2 - 2x + 1 / x3 -1 + x2 - 1 / ( x - 1 )2
2) x4 - 2x2y2 + y4 / x3 - y3
1: \(=\dfrac{x-1}{x^2+x+1}+\dfrac{x+1}{x-1}\)
\(=\dfrac{x^2-2x+1+x^3+x^2+x^2+x+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^3+3x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
2: \(=\dfrac{\left(x^2-y^2\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{\left(x-y\right)\left(x+y\right)^2}{x^2+xy+y^2}\)
Tìm số tự nhiên x, biết:
a, 2(x - 51) = 2.23+20
b, 2x - 49 = 5.32
c, [(8x - 12) : 4].33 = 36
d, 2x+1- 22 = 32
e, (x3 - 77): 4 = 5
a: \(2\left(x-51\right)=2\cdot2^3+20\)
=>\(2\left(x-51\right)=2^4+20=36\)
=>x-51=36/2=18
=>x=18+51=69
b: \(2x-49=5\cdot3^2\)
=>\(2x-49=5\cdot9=45\)
=>2x=45+49=94
=>x=94/2=47
c: \(\left[\left(8x-12\right):4\right]\cdot3^3=3^6\)
=>\(\left[4\cdot\dfrac{\left(2x-3\right)}{4}\right]=3^3\)
=>\(2x-3=3^3=27\)
=>2x=3+27=30
=>x=30/2=15
d: \(2^{x+1}-2^2=32\)
=>\(2^{x+1}=32+2^2=32+4=36\)
=>\(x+1=log_236\)
=>\(x=log_236-1\)
e: \(\left(x^3-77\right):4=5\)
=>\(x^3-77=20\)
=>\(x^3=77+20=97\)
=>\(x=\sqrt[3]{97}\)
Tìm x:
a) (3x-2)(2x-1)-(6x2-3x)=0
b) x3-(x+1)(x2-x+1)=x
c) 56x4+7x=0
d) x2-5x-24=0
a: Ta có: \(\left(3x-2\right)\left(2x-1\right)-\left(6x^2-3x\right)=0\)
\(\Leftrightarrow2x-1=0\)
hay \(x=\dfrac{1}{2}\)
b: Ta có: \(x^3-\left(x+1\right)\left(x^2-x+1\right)=x\)
\(\Leftrightarrow x^3-x^3-1=x\)
hay x=-1
c: Ta có: \(56x^4+7x=0\)
\(\Leftrightarrow7x\left(8x^3+1\right)=0\)
\(\Leftrightarrow x\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
d: Ta có: \(x^2-5x-24=0\)
\(\Leftrightarrow\left(x-8\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-3\end{matrix}\right.\)
Bài 1: Tìm x là STN biết:
1/ 5x - 2 - 32 = 24 - ( 68 : 66 - 62)
2/ 3x + 42 = 196 : (193 x 192) - 3.12014
3/ 2x + 2x + 4 = 272
4/ 3 + 2x - 1 = 24 - \([4^2-(2^2-1)]\)
1: =>\(5^{x-2}-9=2^4-\left(6^2-6^2\right)\)
=>\(5^{x-2}=16+9=25\)
=>x-2=2
=>x=4
2: \(\Leftrightarrow3^x+16=19^6:19^5-3=19-3=16\)
=>3^x=0
=>x=0
3: \(\Leftrightarrow2^x+2^x\cdot16=272\)
=>2^x*17=272
=>2^x=16
=>x=4
4: \(\Leftrightarrow2^{x-1}+3=24-\left(4^2-2^2+1\right)=24-\left(16-4+1\right)\)
=>\(2^{x-1}+3=24-16+4-1=8+4-1=12-1=11\)
=>2^x-1=8
=>x-1=3
=>x=4