Cho a, b, c là các số dương và \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\)
Tìm MAX của abc.
cho a;b;c là các số thực dương thỏa mãn abc=8.Tìm Max P=\(\frac{1}{2a+b+6}+\frac{1}{2b+c+6}+\frac{1}{2c+a+6}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(P=\frac{1}{\left(a+2\right)+\left(a+2\right)+\left(b+2\right)}+\frac{1}{\left(b+2\right)+\left(b+2\right)+\left(c+2\right)}+\frac{1}{\left(c+2\right)+\left(c+2\right)+\left(a+2\right)}\)
\(\le\frac{1}{9}\left(\frac{2}{a+2}+\frac{1}{b+2}\right)+\frac{1}{9}\left(\frac{2}{b+2}+\frac{1}{c+2}\right)+\frac{1}{9}\left(\frac{2}{c+2}+\frac{1}{a+2}\right)\)
\(=\frac{1}{3}\left(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\right)\)
Dễ dàng cm BĐT \(\frac{1}{x+1}+\frac{1}{y+1}\ge\frac{2}{1+\sqrt{xy}}\)
\(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=\frac{1}{2}\left(\frac{1}{1+\frac{a}{2}}+\frac{1}{1+\frac{b}{2}}+\frac{1}{1+\frac{c}{2}}\right)\)
\(\le\frac{1}{2}.\frac{3}{1+\sqrt[3]{\frac{abc}{8}}}=\frac{3}{4}\Rightarrow P\le\frac{1}{4}\)
Xảy ra khi \(a=b=c=2\)
À viết ngược dấu BĐT phụ r` :v
\(\frac{1}{1+x}+\frac{1}{1+y}\le\frac{2}{1+\sqrt{xy}}\) mới đúng nhé :v
\(\Leftrightarrow\frac{\left(\sqrt{xy}-1\right)\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(x+1\right)\left(y+1\right)\left(1+\sqrt{xy}\right)}\le0\)
Cho a, b, c là các số thực dương thỏa mãn: ab + bc + ca = abc. Tìm max của biểu thức:
\(\frac{a}{bc\left(a+1\right)}+\frac{b}{ac\left(b+1\right)}+\frac{c}{ab\left(c+1\right)}\)
\(ab+bc+ca=abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
\(\frac{a}{bc\left(a+1\right)}=\frac{\frac{1}{x}}{\frac{1}{y}\cdot\frac{1}{z}\left(\frac{1}{x}+1\right)}=\frac{xyz}{x\left(x+1\right)}=\frac{yz}{x+1}\)
Tươn tự rồi cộng vế theo vế:
\(A=\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\le\frac{\left(x+y\right)^2}{4\left(z+1\right)}+\frac{\left(y+z\right)^2}{4\left(x+1\right)}+\frac{\left(z+x\right)^2}{4\left(y+1\right)}\)
Đặt \(x+y=p;y+z=q;z+x=r\Rightarrow p+q+r=2\)
\(A\le\Sigma\frac{\left(x+y\right)^2}{4\left(z+1\right)}=\Sigma\frac{\left(x+y\right)^2}{4\left[\left(z+y\right)+\left(z+x\right)\right]}=\frac{p^2}{4\left(q+r\right)}+\frac{r^2}{4\left(p+q\right)}+\frac{q^2}{4\left(p+r\right)}\)
Sau khi đổi biến,cô si thì em ra thế này.Ai đó giúp em với :)
Cho a,b,c là các số dương và \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\).Tìm GTLN của A=abc
\(\Rightarrow\frac{1}{1+a}=\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)=\frac{b}{b+1}+\frac{c}{c+1}\ge2\sqrt{\frac{bc}{\left(b+1\right)\left(c+1\right)}}\) (1)
Tương tự:
\(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+c\right)\left(1+a\right)}}\) (2)
\(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\) (3)
Từ (1) (2) và (3)
=> \(\frac{1}{1+a}\cdot\frac{1}{1+b}\cdot\frac{1}{1+c}\ge8\sqrt{\frac{\left(abc\right)^2}{\left[\left(1+a\right)\left(1+b\right)\left(1+c\right)\right]^2}}=8\cdot\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
=> \(1\ge8abc\)
=> \(abc\le\frac{1}{8}\)
Vậy GTLN là 1/8 khi x = y=z = 1/2
Cho a,b,c là các số thực dương và abc=1. Tìm GTLN của \(P=\frac{1}{ab+a+2}+\frac{1}{bc+b+2}+\frac{1}{ca+c+2}\)
\(P=\frac{1}{ab+a+2}+\frac{1}{bc+b+2}+\frac{1}{ca+c+2}\)
Ta có:
\(\frac{1}{ab+a+2}=\frac{1}{ab+1+a+1}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{a+1}\right)=\frac{1}{4}\left(\frac{abc}{ab+abc}+\frac{1}{a+1}\right)\)
\(=\frac{1}{4}\left(\frac{c}{c+1}+\frac{1}{a+1}\right)\)
Tương tự ta cũng có: \(\frac{1}{bc+b+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{b+1}\right),\frac{1}{ca+c+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{c}{c+1}\right)\)
Cộng lại vế với vế ta được:
\(P\le\frac{1}{4}\left(\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\right)=\frac{3}{4}\)
Dấu \(=\)khi \(a=b=c=1\).
cho a,b,c là 3 số dương thỏa mãn: \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2.\)
tính Max Q=abc
ta có \(\frac{1}{1+a}\)+\(\frac{1}{1+b}+\frac{1}{1+c}=2\)
=>\(1+\frac{1}{a}+1+\frac{1}{b}+1+\frac{1}{c}=2\)
=>\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2-3=-1\)
giả sử a>hoặc=b>hoặc=c>1
=>\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}< \frac{3}{c}\)=>1<hoặc=C<hoặc=3
=>c={1,2,3}
+c=1=>...
+c=2=>...
+c=3=>...
thay vào r thử nhé.e lớp 7 nên nếu sai thì thôi nha
#hủ tiếu
cao tiến dũng 7c cxh:bạn ơi.3 số dương chứ đâu phải nguyên dương mà bạn làm như vậy:v
1)Cho a,b,c là các số thực thỏa mãn: a+b+c=2015 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2015}\).Tính \(\frac{1}{a^{2015}}+\frac{1}{b^{2015}}+\frac{1}{c^{2015}}\)
2)Cho n là số dương.Chứng minh:
T= \(2^{3n+1}-2^{3n-1}+1\) là hợp số.
3)Cho a,b,c là ba số dương và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\).Tìm Max A=\(\frac{1}{\sqrt{a^2-ab+b^2}}+\frac{1}{\sqrt{b^2-bc+c^2}}+\frac{1}{\sqrt{c^2-ac+a^2}}\)
Cho a,b,c dương. abc=1
tìm Max P=\(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\)
Đặt \(a=x^3;b=y^3;c=z^3\)thì \(\hept{\begin{cases}x,y,z>0\\xyz=1\end{cases}}\)và ta cần tìm GTLN của \(P=\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\)
Áp dụng BĐT AM - GM, ta được: \(x.x.y\le\frac{x^3+x^3+y^3}{3}=\frac{2x^3+y^3}{3}\)(1) ; \(y.y.x\le\frac{y^3+y^3+x^3}{3}=\frac{2y^3+x^3}{3}\)(2)
Cộng theo vế của 2 BĐT (1) và (2), ta được: \(x^2y+xy^2\le x^3+y^3\)hay \(x^3+y^3\ge xy\left(x+y\right)\)
Kết hợp giả thiết xyz = 1 suy ra \(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y\right)+1}=\frac{1}{xy\left(x+y+z\right)}=\frac{z}{x+y+z}\)
Tương tự, ta có: \(\frac{1}{y^3+z^3+1}\le\frac{x}{x+y+z}\); \(\frac{1}{z^3+x^3+1}\le\frac{y}{x+y+z}\)
Cộng theo vế của 3 BĐT trên, ta được: \(P=\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\le\frac{x+y+z}{x+y+z}=1\)
Đẳng thức xảy ra khi x = y = z = 1 hay a = b = c = 1
Cho a,b,c là ba số dương và a ≥ max{ b, c }
Tìm GTNN của biểu thức \(P=\frac{a}{b}+2\sqrt{1+\frac{b}{c}}+3\sqrt[3]{1+\frac{c}{a}}\)
Cho a,b,c là ba số dương thỏa mãn \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\)
Tìm Max Q=a.b.c
\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\)
\(\Leftrightarrow\frac{1}{1+a}=1-\frac{1}{1+b}+1-\frac{1}{1+c}\)
\(\Leftrightarrow\frac{1}{1+a}=\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\left(\text{ta áp dụng BĐT cô-si}\right)\)
\(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\)
Tương tự, ta có:
\(\frac{1}{1+c}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+b\right)}}\)
Nhân theo vế. ta có: \(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\frac{\sqrt{a^2b^2c^2}}{\left(1+a\right)^2\left(1+b\right)^2\left(1+c\right)^2}=\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow abc\le\frac{1}{8}\)
Dấu "=" xảy ra khi: \(Q=abc;MAX_Q=\frac{1}{8}\Leftrightarrow a=b=c=\frac{1}{2}\)
P/s: Ko chắc