Cho A=1+2+2^2+2^3+...+2^99+2^100
Tìm số dư khi chia A cho 30
Cho tổng A=2^0 + 2^1 +2^2 +2^3+2^4+2^5 +....+2^100
Tìm số dư của phép chia tổng A cho 3
cho tổng A=2^0+2^1+2^3+2^4+2^5+...+2^100
tìm số dư của phép chia tổng Acho3
A=2 mũ 0 +2 mũ 1+2 mũ 2+ 2mũ 3 + 2 mũ 4+2 mũ 5 +...+ 2 mũ 100
Tìm số dư của phép chia tổng A cho 3
Cứu tui với
\(A=2^0+2^1+2^2+2^3+2^4+2^5+\dots+2^{100}\\=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+\dots+(2^{99}+2^{100})+2^0\\=2\cdot(1+2)+2^3\cdot(1+2)+2^5\cdot(1+2)+\dots+2^{99}\cdot(1+2)+1\\=2\cdot3+2^3\cdot3+2^5\cdot3+\dots+2^{99}\cdot3+1\\=3\cdot(2+2^3+2^5+\dots+2^{99})+1\)
Vì \(3\cdot(2+2^3+2^5+\dots+2^{99})\vdots3\)
\(\Rightarrow 3\cdot(2+2^3+2^5+\dots+2^{99})+1\) chia \(3\) dư 1
hay số dư của phép chia \(A\) cho \(3\) là \(1\).
A=2^0 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100
A=1 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100
A=1 + (2^1 + 2^2) + (2^3 + 2^4) + ....+(2^99 + 2^100)
A=1 + 2.(1+2) + 2^3.(1+2)+....+2^99.(1+2)
A=1 + 2 . 3 + 2^3 . 3 +....+2^99 . 3
A=1 +3 .(2+2^3+..+2^99)
=> A:3 dư 1
Cho A=1+2+22+23....+299+2100
Tìm số dư khi chia A cho 30
Đặt A = B +1
Ta nhận thấy từ số hạng( 2 + 22+ 23 + 24) , 4 số hạng liên tiếp chia hết cho 30
B = ( 2 + 22+ 23 + 24) + .... + 297+ 298 + 299 + 2100
B = ( 2 + 22+ 23 + 24) + .... + 296 ( 2 + 22+ 23 + 24) chia hết cho 30
=> A = B + 1 chia 30 dư 1
1 tính giá trị của biểu thức
B=-1+2-3+4-5+....-99+100
Tìm tất cả các số nguyên n thỏa mãn:5n+14 chia hết cho n+2
CHO A=2^1+2^2+2^3+. . . . .2^99+2^100.Chứng minh rằng A ko chia hết cho 7 và tìm số dư của a khi chia cho 7
chia thành từng bộ ba thì tổng của 99 số hạng sau chia hết cho 7
A = 2 + (2^2+2^3+2^4) +..+ (2^98+2^99+2^100)
A = 2 + 7.2^2 +..+ 7.2^98 => A chia 7 dư 2
chia thành từng bộ ba thì tổng của 99 số hạng sau chia hết cho 7
A = 2 + (2^2+2^3+2^4) +..+ (2^98+2^99+2^100)
A = 2 + 7.2^2 +..+ 7.2^98 => A chia 7 dư 2
cho A=2^1+2^2+2^3+...+2^99+2^100. Chứng minh rằng A chia hết cho 3 ;15;31 nhưng không chia hết cho 7 và tìm số dư của A khi chia cho 7
* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\) có \(100\) số hạng
và \(100⋮2;4;5\) và \(100⋮̸3\)
ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\) (vì \(100⋮2\) )
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{99}.3=3.\left(2+2^3+...+2^{99}\right)⋮3\)
vậy \(A\) chia hết cho \(3\) (1)
* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(=\left(2^1+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(+2^{97}+2^{98}+2^{99}+2^{100}\right)\) (vì \(100⋮4\) )
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(=2\left(1+2+4+8\right)+2^5\left(1+2+4+8\right)+...+2^{97}\left(1+2+4+8\right)\)
\(=2.15+2^5.15+...+2^{97}.15=15.\left(2+2^5+...+2^{97}\right)⋮15\)
vậy \(A\) chia hết cho \(15\) (2)
* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(=\left(2^1+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\) (vì \(100⋮5\) )
\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=2.\left(1+2+4+8+16\right)+2^6\left(1+2+4+8+16\right)+...+2^{96}\left(1+2+4+8+16\right)\)
\(=2.31+2^6.31+...+2^{96}.31=31.\left(2+2^6+...+2^{96}\right)⋮31\)
vậy \(A\) chia hết cho \(31\) (3)
* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(=2^1+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\) (vì \(100⋮̸3\) )
\(=2+2^2\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)
\(=2+2^2\left(1+2+4\right)+...+2^{98}\left(1+2+4\right)\)
\(=2+2^2.7+...+2^{98}.7=2+7\left(2^2+...+2^{98}\right)\)
ta có : \(7\left(2^2+...+2^{98}\right)⋮7\) nhưng \(2⋮̸7\)
vậy \(A\) không chia hết cho \(7\) và số \(2< 7\)
nên số 2 là số dư khi \(A\) chia cho \(7\) (4)
từ (1);(2);(3) và (4) \(\Rightarrow\) (ĐPCM)
a) Cho A = 2^1 + 2^2 + 2^3 + ....... + 2^99 + 2^100 . Chứng minh rằng A chia hết cho 3;15;31 nhưng không chia hết cho 7 và tìm số dư của A khi chia cho 7.
ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\) (có 100 con số trong phép cộng)
ta có : \(100\) chia hết cho \(2;4;5\) và không chia hết cho \(3\) ; \(100\) chia \(3\) dư 2 (*)
ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\) (vì (*))
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)
\(A=2.3+2^3.3+...+2^{99}.3=3\left(2+2^3+...+2^{99}\right)⋮3\)
\(\Rightarrow A\) chia hết cho \(3\) (1)
ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(A=\left(2^1+2^2+2^3+2^4\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\) (vì (*))
\(A=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(A=2\left(1+2+4+8\right)+...+2^{97}\left(1+2+4+8\right)\)
\(A=2.15+...+2^{97}.15=15\left(2+...+2^{97}\right)⋮15\)
\(\Rightarrow A\) chia hết cho \(15\) (2)
ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(A=\left(2^1+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{99}\right)\)(vì(*))
\(A=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(A=2\left(1+2+4+8+16\right)+...+2^{96}\left(1+2+4+8+16\right)\)
\(A=2.31+...+2^{96}.31=31\left(2+...+2^{96}\right)⋮31\)
\(\Rightarrow A\) chia hết cho \(31\) (3)
ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(A=2+2^2+\left(2^3+2^4+2^5\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\) (vì (*))
\(A=2+2^2+2^3\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)
\(A=2+4+2^3\left(1+2+4\right)+...+2^{98}\left(1+2+4\right)\)
\(A=6+2^3.7+...+2^{98}.7\)
\(A=6+7\left(2^3+...+2^{98}\right)\)
ta có : \(7\left(2^3+...+2^{98}\right)⋮7\) nhưng \(6\) không trùng với \(7\)
\(\Rightarrow A\) không chia hết cho \(7\) và \(6< 7\) \(\Rightarrow\) \(6\) là số dư khi \(A\) chia cho \(7\) (4)
từ (1);(2);(3)và(4) ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
chia hết cho \(3;15;31\) nhưng không chia hết cho \(7\) và số dư của \(A\) chia \(7\) là \(6\) (đpcm)
Cho A = 1+2+22+23+...+299+2100 . Số dư khi chia A cho 31 là ?
A=1+2+22+23+...+299+2100
A=1+(2+22+23+24+25)+(26+27+28+29+210)+...+(296+297+298+299+2100)
A=1+2(1+2+22+23+24)+25(1+2+22+23+24)+...+296(1+2+22+23+24)
A=1+2.31+25.31+...+296.31
A=1+[31(2+25+...+296)]
Vì 31(2+25+...+296) chia het cho 31
Nên 1+[31(2+25+...+296)] chia 31 dư 1
Vậy A chia 31 dư 1