Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quốc Khánh
Xem chi tiết
Nguyễn Quốc Khánh
17 tháng 12 2021 lúc 21:55

Mk cần gấp ai giúp mk vs ạ !

 

Nguyễn Quốc Khánh
19 tháng 12 2021 lúc 8:23

Ko ai lm ak ???

 

Gia Hân Nguyễn
Xem chi tiết
Tần Khải Dương
Xem chi tiết
Toru
22 tháng 12 2023 lúc 20:07

\(A=2^0+2^1+2^2+2^3+2^4+2^5+\dots+2^{100}\\=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+\dots+(2^{99}+2^{100})+2^0\\=2\cdot(1+2)+2^3\cdot(1+2)+2^5\cdot(1+2)+\dots+2^{99}\cdot(1+2)+1\\=2\cdot3+2^3\cdot3+2^5\cdot3+\dots+2^{99}\cdot3+1\\=3\cdot(2+2^3+2^5+\dots+2^{99})+1\)

Vì \(3\cdot(2+2^3+2^5+\dots+2^{99})\vdots3\)

\(\Rightarrow 3\cdot(2+2^3+2^5+\dots+2^{99})+1\) chia \(3\) dư 1

hay số dư của phép chia \(A\) cho \(3\) là \(1\).

Lê Quang Khải
22 tháng 12 2023 lúc 20:10

A=2^0 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100

A=1 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100

A=1 + (2^1 + 2^2) + (2^3 + 2^4) + ....+(2^99 + 2^100)

A=1 + 2.(1+2) + 2^3.(1+2)+....+2^99.(1+2)

A=1 + 2 . 3 + 2^3 . 3 +....+2^99 . 3

A=1 +3 .(2+2^3+..+2^99)

=> A:3 dư 1

Nguyễn Thị Thanh Trúc
Xem chi tiết
Nguyễn Đắc Thịnh
4 tháng 11 2014 lúc 23:15

Đặt A = B +1 

Ta nhận thấy từ số hạng( 2 + 22+ 2+ 24) , 4 số hạng liên tiếp chia hết cho 30

B = ( 2 + 22+ 2+ 24 + .... + 297+ 298 + 299 + 2100

B = ( 2 + 22+ 2+ 24 + .... + 296 ( 2 + 22+ 2+ 24)  chia hết cho 30

=> A = B + 1 chia 30 dư 1

 

hoàng gia lâm
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 11 2023 lúc 19:21

loading...  loading...  

Nguyễn Minh Công
Xem chi tiết
Nhóc_Siêu Phàm
12 tháng 12 2017 lúc 23:07

chia thành từng bộ ba thì tổng của 99 số hạng sau chia hết cho 7 
A = 2 + (2^2+2^3+2^4) +..+ (2^98+2^99+2^100) 
A = 2 + 7.2^2 +..+ 7.2^98 => A chia 7 dư 2 

Phạm Tuấn Đạt
12 tháng 12 2017 lúc 23:09

chia thành từng bộ ba thì tổng của 99 số hạng sau chia hết cho 7 
A = 2 + (2^2+2^3+2^4) +..+ (2^98+2^99+2^100) 
A = 2 + 7.2^2 +..+ 7.2^98 => A chia 7 dư 2 

Nam Lee
Xem chi tiết
Mysterious Person
21 tháng 9 2017 lúc 6:05

* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)\(100\) số hạng

\(100⋮2;4;5\)\(100⋮̸3\)

ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)

\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\) (vì \(100⋮2\) )

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{99}.3=3.\left(2+2^3+...+2^{99}\right)⋮3\)

vậy \(A\) chia hết cho \(3\) (1)

* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)

\(=\left(2^1+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(+2^{97}+2^{98}+2^{99}+2^{100}\right)\) (vì \(100⋮4\) )

\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)

\(=2\left(1+2+4+8\right)+2^5\left(1+2+4+8\right)+...+2^{97}\left(1+2+4+8\right)\)

\(=2.15+2^5.15+...+2^{97}.15=15.\left(2+2^5+...+2^{97}\right)⋮15\)

vậy \(A\) chia hết cho \(15\) (2)

* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)

\(=\left(2^1+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\) (vì \(100⋮5\) )

\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=2.\left(1+2+4+8+16\right)+2^6\left(1+2+4+8+16\right)+...+2^{96}\left(1+2+4+8+16\right)\)

\(=2.31+2^6.31+...+2^{96}.31=31.\left(2+2^6+...+2^{96}\right)⋮31\)

vậy \(A\) chia hết cho \(31\) (3)

* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)

\(=2^1+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\) (vì \(100⋮̸3\) )

\(=2+2^2\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)

\(=2+2^2\left(1+2+4\right)+...+2^{98}\left(1+2+4\right)\)

\(=2+2^2.7+...+2^{98}.7=2+7\left(2^2+...+2^{98}\right)\)

ta có : \(7\left(2^2+...+2^{98}\right)⋮7\) nhưng \(2⋮̸7\)

vậy \(A\) không chia hết cho \(7\) và số \(2< 7\)

nên số 2 là số dư khi \(A\) chia cho \(7\) (4)

từ (1);(2);(3) và (4) \(\Rightarrow\) (ĐPCM)

Nam Lee
Xem chi tiết
Mysterious Person
27 tháng 8 2017 lúc 17:53

ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\) (có 100 con số trong phép cộng)

ta có : \(100\) chia hết cho \(2;4;5\) và không chia hết cho \(3\) ; \(100\) chia \(3\) dư 2 (*)

ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\) (vì (*))

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(A=2.3+2^3.3+...+2^{99}.3=3\left(2+2^3+...+2^{99}\right)⋮3\)

\(\Rightarrow A\) chia hết cho \(3\) (1)

ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)

\(A=\left(2^1+2^2+2^3+2^4\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\) (vì (*))

\(A=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)

\(A=2\left(1+2+4+8\right)+...+2^{97}\left(1+2+4+8\right)\)

\(A=2.15+...+2^{97}.15=15\left(2+...+2^{97}\right)⋮15\)

\(\Rightarrow A\) chia hết cho \(15\) (2)

ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)

\(A=\left(2^1+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{99}\right)\)(vì(*))

\(A=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(A=2\left(1+2+4+8+16\right)+...+2^{96}\left(1+2+4+8+16\right)\)

\(A=2.31+...+2^{96}.31=31\left(2+...+2^{96}\right)⋮31\)

\(\Rightarrow A\) chia hết cho \(31\) (3)

ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)

\(A=2+2^2+\left(2^3+2^4+2^5\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\) (vì (*))

\(A=2+2^2+2^3\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)

\(A=2+4+2^3\left(1+2+4\right)+...+2^{98}\left(1+2+4\right)\)

\(A=6+2^3.7+...+2^{98}.7\)

\(A=6+7\left(2^3+...+2^{98}\right)\)

ta có : \(7\left(2^3+...+2^{98}\right)⋮7\) nhưng \(6\) không trùng với \(7\)

\(\Rightarrow A\) không chia hết cho \(7\)\(6< 7\) \(\Rightarrow\) \(6\) là số dư khi \(A\) chia cho \(7\) (4)

từ (1);(2);(3)và(4) ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)

chia hết cho \(3;15;31\) nhưng không chia hết cho \(7\) và số dư của \(A\) chia \(7\)\(6\) (đpcm)

Ngô Hồng Thuận
Xem chi tiết
Quỳnh Giang Bùi
27 tháng 12 2014 lúc 11:50

A=1+2+22+23+...+299+2100 

A=1+(2+22+23+24+25)+(26+27+28+29+210)+...+(296+297+298+299+2100)

A=1+2(1+2+22+23+24)+25(1+2+22+23+24)+...+296(1+2+22+23+24)

A=1+2.31+25.31+...+296.31

A=1+[31(2+25+...+296)]

Vì 31(2+25+...+296) chia het cho 31

Nên 1+[31(2+25+...+296)] chia 31 dư 1

Vậy A chia 31 dư 1