Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Văn Thành
BÀI 1: a) CHO HÌNH BÌNH HÀNH ABCD CÓ góc 90 . SO SÁNH AC VÀ BDb) TỨ GIÁC ABCD CÓ hat{A} , hat{B} ,hat{C} TÙ. CHỨNG MINH ACBDBÀI 2: CHO HÌNH CHỮ NHẬT ABCD. KẺ BH VUÔNG GÓC AC (H THUỘC AC). TRÊN TIA ĐỐI CỦA TIA BH LẤY ĐIỂM E SAO CHO BE AC. CHỨNG MINH RẰNG GÓC ADE 45 ĐỘBÀI 3 : CHỨNG MINH RẰNG TỨ GIÁC CÓ GIAO ĐIỂM HAI ĐƯỜNG CHÉO TRÙNG VỚI GIAO ĐIỂM CÁC ĐOẠN THẲNG NỐI TRUNG ĐIỂM CÁC CẠNH ĐỐI DIỆN THÌ TỨ GIÁC ĐÓ LÀ HÌNH BÌNH HÀNHBÀI 4: CHO TA...
Đọc tiếp

Những câu hỏi liên quan
nguyen thi thanh hoa
Xem chi tiết
Lê An Thy
Xem chi tiết
nguyễn lê bích ngọc
Xem chi tiết
Lê An Thy
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 12 2022 lúc 14:30

 

Bài 2: 

a: Xét ΔADN vuông tại N và ΔCBM vuông tại M có

AD=CB

góc ADN=góc CBM

DO đó: ΔADN=ΔCBM

=>DN=BM và AN=CM

b: Xet tứ giác AMCN có

AN//CM

AN=CM

Do đó: AMCN là hình bình hành

c: Gọi O là giao của AC và BD

=>O là trung điểm của AC

Xet ΔAKC có AN/AK=AO/AC

nên NO//KC

=>KC//BD

Xét ΔBAK có

BN vừa là đường cao, vừa là trung tuyến

nên ΔBAK cân tại B

=>BA=BK=DC

Xét tứ giác BDKC có

KC//BD

DC=BK

Do đo; BDKC là hình thang cân

Lê An Thy
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 12 2022 lúc 14:16

Bài 2:

a: Xét ΔADN vuông tại N và ΔCBM vuông tại M có

AD=CB

góc ADN=góc CBM

DO đó: ΔADN=ΔCBM

=>DN=BM và AN=CM

b: Xet tứ giác AMCN có

AN//CM

AN=CM

Do đó: AMCN là hình bình hành

c: Gọi O là giao của AC và BD

=>O là trung điểm của AC

Xet ΔAKC có AN/AK=AO/AC

nên NO//KC

=>KC//BD

Xét ΔBAK có

BN vừa là đường cao, vừa là trung tuyến

nên ΔBAK cân tại B

=>BA=BK=DC

Xét tứ giác BDKC có

KC//BD

DC=BK

Do đo; BDKC là hình thang cân

Đặng Khánh Ngọc
Xem chi tiết
Rii Sara
28 tháng 10 2016 lúc 22:36

a) Xét ΔABD có
H là trung điểm AD
E là trung điểm AB
=> HE là đường trung bình ΔABD
=> HE//BD và HE = 1/2 BD (1)
CMTT => GF // BD và GF = 1/2 BD (2)
Từ (1) và (2) => HEFG là hình bình hành.

b) Để EFGH là hình chữ nhật
<=> HE = HG. Mà HE = 1/2 BD
HG = 1/2 AC
<=> BD = AC
Vậy khi hai đường chéo AC và BD của tứ giác ABCD bằng nhau thì EFGH là hình chữ nhật.

Thi Thi
Xem chi tiết
Tuân Huỳnh Ngọc MInh
22 tháng 5 2015 lúc 17:43

a) Nối AC

tam giác ACD có HA=HD; GC=GD nên HG là đường trung bình của tam giác ACD

=> HG//AC; HG=1/2AC. (1)

Tam giác ABC có EA=EB; FB=FC nên EF là đường trung bình của tam giác ABC

=> EF//AC; EF=1/2AC. (2)

Từ (1) và (2) suy ra HG//EF; HG=EF

Tứ giác EFGH có  HG//EF; HG=EF

Vậy EFGH là hình bình hành.

b)* Để hình bình hành EFGH là hình thoi, ta cần có thêm hai cạnh kề bằng nhau.

Giả sử EH=FH mà EH=1/20BD(EA=EB, HA=HD nên EH là đường trung bình của tam giác ABD).

                            HG=1/2AC(cmt)

nên BD=AC 

Vậy để hình bình hành EFGH trở thành hình thoi thì hai đường chéo AC và BD của tứ giác ABCD phải bằng nhau.

     * Để hình bình hành EFGH là hình chữ nhật, ta cần có thêm một góc vuông.

Giả sử  góc H=90 độ, vì HG//AC(cmt)
                                   HG vuông góc với HE

từ hai điều này suy ra AC cũng vuông góc với HE

                           lại có HE//BD(cmt)      

từ hai điều này lại suy ra AC vuông góc với BD

vậy để hình bình hành EFGH là hình thoi, hai đuognừ chéo AC và BD của tứ giác ABCD phải vuông góc với nhau.

* Để hình bình hành EFGH trở thành hình vuông ta cần có thêm hai cạnh kề bằng nhau và một góc vuông.

Giả sử HE=HG => AC=BD(cmt)

           H=90 độ => AC vuông góc với BD(cmt)

vậy để hình bình hành EFGH là hình vuông, hai đuognừ chéo AC và BD của tứ giác ABCD phải bằng nhau và vuông góc với nhau.

Nguyen Thi Thu Hang
Xem chi tiết
Thảo Bùi
26 tháng 7 2016 lúc 9:51

Tách ra đi bạn

Nguyen Thi Thu Hang
Xem chi tiết