Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Gia Thương Thân Hồ
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 23:29

a: Xét ΔHEB vuông tại E và ΔHDC vuông tại D có

góc EHB=góc DHC

=>ΔHEB đồng dạng với ΔHDC

b: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc A chung

=>ΔADB đồng dạng với ΔAEC

=>AD/AE=AB/AC

=>AD*AC=AB*AE; AD/AB=AE/AC

c: Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc A chung

=>ΔADE đồng dạng với ΔABC

=>góc AED=góc ACB

Yến Phạm Hải
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 5 2022 lúc 20:48

a: Xét tứ giác BCDE có \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BCDE là tứ giác nội tiếp

b: Xét ΔDHC vuông tại D và ΔDAB vuông tại D có 

\(\widehat{HCD}=\widehat{ABD}\)

Do đó: ΔDHC\(\sim\)ΔDAB

Suy ra: DH/DA=DC/DB

hay \(DH\cdot DB=DA\cdot DC\)

Chí Vĩ Đặng
Xem chi tiết
Nguyễn Tuấn Minh
Xem chi tiết
Không Tên
6 tháng 5 2018 lúc 20:01

a)  Xét \(\Delta ABD\)và   \(\Delta ACE\)có:

    \(\widehat{ADB}=\widehat{AEC}=90^0\)

    \(\widehat{BAC}\) chung

suy ra:   \(\Delta ABD~\Delta ACE\)  (g.g)

\(\Rightarrow\)\(\frac{AB}{AC}=\frac{AD}{AE}\)

\(\Rightarrow\)\(AB.AE=AC.AD\) 

b)   \(\frac{AB}{AC}=\frac{AD}{AE}\) (câu a)

\(\Rightarrow\)\(\frac{AE}{AC}=\frac{AD}{AB}\)

Xét  \(\Delta AED\)và    \(\Delta ACB\)có:

     \(\frac{AE}{AC}=\frac{AD}{AB}\) (cmt)

     \(\widehat{EAD}\) chung

suy ra:   \(\Delta AED~\Delta ACB\)  (g.g)

c)  Kẻ  \(HK\perp BC\) \(\left(K\in BC\right)\)

C/m:    \(\Delta BKH~\Delta BDC\)(g.g)  \(\Rightarrow\) \(\frac{BK}{BD}=\frac{BH}{BC}\)\(\Rightarrow\)\(BH.BD=BK.BC\) (1)

           \(\Delta CKH~\Delta CEB\)(g.g)   \(\Rightarrow\)\(\frac{CK}{CE}=\frac{CH}{CB}\)\(\Rightarrow\)\(CE.CH=CK.BC\) (2)

Lấy (1) + (2) theo vế ta được:   \(BH.BD+CE.CH=BK.BC+CK.BC=BC^2\) (đpcm)

lê phương nhung
Xem chi tiết
Khanh
Xem chi tiết
Trần Bảo Trâm
Xem chi tiết
Nguyễn Tùng Dương
Xem chi tiết
Vũ Thị Bảo Ngọc
Xem chi tiết
Trần Thanh Thủy
Xem chi tiết
Triệu Minh Anh
27 tháng 7 2019 lúc 9:30

Ta có: \(\widehat{CMD}=\widehat{MCB}+\widehat{MBC}=\frac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)=\frac{1}{2}\left(180^o-\widehat{CAB}\right)=\frac{1}{2}\left(180^o-60^o\right)=60^o\)

Edogawa Conan
27 tháng 7 2019 lúc 9:42

A B C D E M

Cm: Xét t/giác ABC có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(tổng 3 góc của 2 t/giác)

=> \(\widehat{B}+\widehat{C}=180^0-\widehat{A}=180^0-60^0=120^0\)

BD và CE là đường p/giác của góc B và C nên :

+) \(\widehat{ABD}=\widehat{DBC}=\widehat{\frac{B}{2}}\)

+) \(\widehat{ACE}=\widehat{ECB}=\widehat{\frac{C}{2}}\)

=> \(\widehat{DBC}+\widehat{ECB}=\frac{\widehat{B}}{2}+\widehat{\frac{C}{2}}=\frac{\left(\widehat{B}+\widehat{C}\right)}{2}=\frac{120^0}{2}=60^0\)

Do \(\widehat{DMC}\)là góc ngoài của t/giác MBC 

=> \(\widehat{DMC}=\widehat{MCB}+\widehat{MBC}=60^0\)

=> \(\widehat{DMC}=\widehat{A}=60^0\)