a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc DAB chung
Do đó: ΔADB\(\sim\)ΔAEC
Suy ra: AD/AE=AB/AC
hay \(AD\cdot AC=AE\cdot AB\)
b: Xét ΔAED và ΔACB có
AE/AC=AD/AB
góc EAD chung
Do đó:ΔAED\(\sim\)ΔACB
Suy ra: \(\widehat{AED}=\widehat{ACB}\)
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc DAB chung
Do đó: ΔADB\(\sim\)ΔAEC
Suy ra: AD/AE=AB/AC
hay \(AD\cdot AC=AE\cdot AB\)
b: Xét ΔAED và ΔACB có
AE/AC=AD/AB
góc EAD chung
Do đó:ΔAED\(\sim\)ΔACB
Suy ra: \(\widehat{AED}=\widehat{ACB}\)
Cho tam giác ABC có 3 góc nhọn, hai đường cao BD và CE của tam giác cắt nhau tại H( D thuộc AC, E thuộc AB). Chứng minh rằng
a) AB.AE=AC.AD
b) tam giác AED đồng dạng tam giác ACB.
c) BH.BD+CH.CE=BC2
Cho tam giác ABC có ba góc nhọn, hai đường cao BD và CE của tam giác cắt nhau tại H ( D thuộc AC, E thuộc AB).
a) Chứng minh 2 tam giác BHE và CHD đồng dạng
b) Chứng minh AB.AE=AC.AD
c) Chứng minh góc AED = góc ACB
Cho tam giác ABC có ba góc nhọn, hai đường cai BD và CE cắt nhau tại H. Chứng minh rằng:
a) AB.AE=AC.AD
b) BH.HD= CD.AD
d) BH.BD+ CH.CE= BC2
Bài tập : Cho tam giác ABC có 3 góc nhọn, 2 đường cao BD và CE cắt nhau ở H,C,D thuộc AC; E thuộc AB. Chứng minh rằng.
a, AB.AE= AC. AD
b, Góc AED = góc ACB
c, BH. BD + CH . CE = BC 2( bình phương)
help me (-_-ll)
Cho tam giác ABC có ba góc nhọn, hai đường cao BD và CE của tam giác cắt nhau tại H (D thuộc AC, E thuộc AB)
a) Chứng minh rằng tam giác BHE đồng dạng với tam giác CHD
b) Chứng minh AB.AE = AC.AD
c) Chứng minh góc AED = góc ACB
Cho △ nhọn ABC (AB < AC), hai đường cao BD và CE (E thuộc AB, D thuộc AC). Gọi giao điểm của BD và CE là H. Chứng minh: BH.BD + CH.CE = BC²
cho tam giác ABC nhọn, các đường cao BD, CE cắt nhau tại H. Cm:
a) tam giác DAB đồng dạng tam giác EAC
b) tam giác HBE đồng dạng tam giác HCD
c) tam giác HBC đồng dạng tam giác HED
d) AB.AE=AC.AD
e) BH.BD+CH.CE=BC^2
Cho tam giác nhọn ABC có hai đường cao BD và CE cắt nhau tại H. Cmr: BH.BD+CH.CE=BC^2
cho tam giác ABC có 3 góc nhọn, 2 đường cao BD và CE của tam giác cắt nhau tại H ( D thuộc AC , E thuộc AB ) . CMR : a) AB . AE = AC . AD
b) góc AED = góc ACB
c) BH . BD + CH . CE = BC2
cho tam giác ABC có AB<AC, hai đường cao BD , CE cắt nhau tại H(D\(\in\)AC;E\(\in\)AB) . Cguwngs minh rằng:
a,\(\Delta HDC\sim\Delta HEB\) từ đó suy ra HD.HB=HE.HC
b, góc ADE= góc ABC
c, \(BC^2=BH.BD+CH.CE\)