Cho P=\(\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{x}\)
a) Rút gọn P
b) Tìm x để P đạt GTLN
Cho biểu thức: \(P=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)
a) Rút gọn gọn P
b) Tìm x để P đạt Min, tìm min đó
c) Tìm x nguyên để y nguyên
\(đkxđ\Leftrightarrow x\ge4\)
\(P=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)
\(=\frac{\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}}{\sqrt{\frac{4^2}{x^2}-2.\frac{4}{x}+1}}\)
\(=\frac{\sqrt{\left(x-4+2\right)^2}+\sqrt{\left(x-4-2\right)^2}}{\sqrt{\left(\frac{4}{x}-1\right)^2}}\)
\(=\frac{|x-2|+|x-6|}{|\frac{4}{x}-1|}=\frac{x-2+|x-6|}{|\frac{4}{x}-1|}\)
Dùng bảng xét dấu nha
Cho P= \(\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{2}{\sqrt{x}-2}-\dfrac{4\sqrt{x}}{x-4}\)
a,Tìm điều kiện xác định và rút gọn P
b,Tìm x để P = \(\dfrac{2}{3}\)
c,Tìm x để P đạt giá trị nhỏ nhất . Tìm giá trị nhỏ nhất đó
a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
Ta có: \(P=\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{2}{\sqrt{x}-2}-\dfrac{4\sqrt{x}}{x-4}\)
\(=\dfrac{x-2\sqrt{x}+2\sqrt{x}+4-4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)
P=\(\left(\dfrac{x+2}{\sqrt{x}+1}-\sqrt{x}\right)\): \(\left(\dfrac{\sqrt{x-4}}{1-x}-\dfrac{\sqrt{x}}{\sqrt{x+1}}\right)\)
a)Rút gọn P
b)Tìm x để P<1
c)Tìm x để đạt giá trị nhỏ nhất
giải chi tiết giúp mk với ạ
Cho biểu thức: P=\(\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)
Rút gọn P , rồi tìm giá trị của x để P đạt GTNN
giúp mình với
Cho P=(\(\dfrac{\sqrt{x}}{\sqrt{x}-2}\)+\(\dfrac{\sqrt{x}}{\sqrt{x}+2}\)).\(\dfrac{x-4}{10\sqrt{x}-2x}\)(với x>0,x khác 4,x khác 25)
a)Rút gọn P
b)Tính P khi x=\(\dfrac{1}{4}\)
c)tìm x để P<-1
\(a.P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{x-4}{10\sqrt{x}-2x}\left(x>0,x\ne4,x\ne25\right)\)
\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-4}+\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{x-4}\right].\dfrac{x-4}{10\sqrt{x}-2x}\)
\(=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{x-4}.\dfrac{x-4}{10\sqrt{x}-2x}\)
\(=\dfrac{2x}{x-4}.\dfrac{x-4}{2\sqrt{x}\left(5-\sqrt{x}\right)}\)
\(=\dfrac{\sqrt{x}}{5-\sqrt{x}}\)
\(b.\) Thay \(x=\dfrac{1}{4}\) vào P, ta được:
\(\dfrac{\sqrt{\dfrac{1}{4}}}{5-\sqrt{\dfrac{1}{4}}}=\dfrac{0,5}{5-0,5}=\dfrac{1}{9}\)
Vậy ......................
\(c.P< -1\)
\(\Leftrightarrow\dfrac{\sqrt{x}}{5-\sqrt{x}}< -1\)
\(\Leftrightarrow\dfrac{\sqrt{x}+5-\sqrt{x}}{5-\sqrt{x}}< 0\)
\(\Leftrightarrow\dfrac{5}{5-\sqrt{x}}< 0\)
\(\Leftrightarrow5-\sqrt{x}< 0\)
\(\Leftrightarrow\sqrt{x}>5\)
\(\Leftrightarrow x>25\left(tm\right)\)
Vậy ...................
12. P=\(\left(\dfrac{\sqrt{x}-1}{x-4}-\dfrac{\sqrt{x}+1}{x-4\sqrt{x}+4}\right).\dfrac{x\sqrt{x}-2x-4\sqrt{x}+8}{6\sqrt{x}-18}\)
a. Rút gọn P
b. Tìm giá trị của x để P>0
c. tìm giá trị của x để P<1
\(a,P=\left(\dfrac{\sqrt{x}-1}{x-4}-\dfrac{\sqrt{x}+1}{x-4\sqrt{x}+4}\right).\dfrac{x\sqrt{x}-2x-4\sqrt{x}+8}{6\sqrt{x}-18}\left(dk:x\ne4,x\ge0,x\ne9\right)\)
\(=\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-2\right)^2}\right).\dfrac{\sqrt{x^2}\left(\sqrt{x}-2\right)-4\left(\sqrt{x}-2\right)}{6\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)^2\left(\sqrt{x}+2\right)}.\dfrac{\left(x-4\right)\left(\sqrt{x}-2\right)}{6\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-3\sqrt{x}+2-x-3\sqrt{x}-2}{\left(x-4\right)\left(\sqrt{x}-2\right)}.\dfrac{\left(x-4\right)\left(\sqrt{x}-2\right)}{6\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-6\sqrt{x}}{6\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-\sqrt{x}}{\sqrt{x}-3}\)
\(b,P>0\Leftrightarrow\dfrac{-\sqrt{x}}{\sqrt{x}-3}>0\Leftrightarrow-\sqrt{x}>0\Leftrightarrow\sqrt{x}< -1\left(ktm\right)\)
\(\Leftrightarrow\sqrt{x}-3>0\Leftrightarrow\sqrt{x}>3\Leftrightarrow x>9\)
\(c,P< 1\Leftrightarrow-\dfrac{\sqrt{x}}{\sqrt{x}-3}< 1\Leftrightarrow-\sqrt{x}< 1\Leftrightarrow\sqrt{x}>-1\left(ktm\right)\)
\(\Leftrightarrow\sqrt{x}-3< 1\Leftrightarrow\sqrt{x}< 4\Leftrightarrow x< 2\)
a: \(P=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)^2\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)-2\sqrt{x}\left(\sqrt{x}+2\right)}{6\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)^2}\cdot\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)^2}{6\left(\sqrt{x}-3\right)}\)
=1/3(căn x-3)
b: P>0
=>căn x-3>0
=>x>9
c: P<1
=>P-1<0
=>\(\dfrac{1-3\sqrt{x}+9}{3\sqrt{x}-9}< 0\)
=>\(\dfrac{-3\sqrt{x}+10}{3\sqrt{x}-9}< 0\)
=>(3căn x-10)/(3căn x-9)>0
=>x>100/3 hoặc 0<x<9
Cho biếu thức: P= \left(1+\frac{4}{\sqrt{x}-1}+\frac{1}{x-1}\right):\left(\frac{x+2\sqrt{x}}{x-1}\right)
a) Rút gọn P
b)Tìm giá trị của x để P=2
Cho P = (\(\dfrac{1}{\sqrt{x}-1 }\) - \(\dfrac{1}{\sqrt{x}}\))(\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\) - \(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\))
a. Tìm đkxđ và rút gọn P
b. Tìm x để P = \(\dfrac{1}{4}\)
Điều kiện: x>2
P= \(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{2}+2}{\sqrt{x}-1}\right)\)
P= \(\left(\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)
P= \(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)
P= \(\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)
b) P= \(\dfrac{1}{4}\)
⇔\(\dfrac{\sqrt{x}-2}{3\sqrt{x}}\) =\(\dfrac{1}{4}\)
⇔\(4\sqrt{x}-8=3\sqrt{x}\)
⇔\(\sqrt{x}=8\)
⇔x=64 (TM)
Vậy X=64(TMĐK) thì P=\(\dfrac{1}{4}\)
cho biểu thức p=\(\dfrac{3\left(x+\sqrt{x}-3\right)}{x+\sqrt{x}-2}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
a rút gọn p
b tìm x để p<15/4