1) \(A\left(9\right)=\dfrac{2}{\sqrt{9}-2}=2\)
2) \(B=\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{4\sqrt{x}}{4-x}\left(x\ge0;x\ne4\right)\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{x-4}+\dfrac{4\sqrt{x}}{x-4}\)
\(=\dfrac{x-2\sqrt{x}+4\sqrt{x}}{x-4}=\dfrac{x+2\sqrt{x}}{x-4}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\left(đpcm\right)\)
3) \(B=\dfrac{\sqrt{x}}{\sqrt{x}-2}\ge0\)
\(\Leftrightarrow\sqrt{x}-2\ge0\)
\(\Leftrightarrow\sqrt{x}\ge2\)
\(\Leftrightarrow x>4\) ( vì \(x\ne4\) )
4) \(A+B=\dfrac{2}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\)
\(\Rightarrow\dfrac{1}{P}=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}+2-4}{\sqrt{x}+2}=1-\dfrac{4}{\sqrt{x}+2}\le1\)
GTNN của P xảy ra khi \(\sqrt{x}+2\) đạt GTNN
Mà GTNN của \(\sqrt{x}+2\) là 2 khi x = 0
\(\Rightarrow min_P=\dfrac{\sqrt{0}-2}{\sqrt{0}+2}=-1\)