Bài 6: Cho ABC vuông tại A có AB = 3 cm; BC = 5 cm.
a.Tính AC.
b) Vẽ phân giác BD (D thuộc AC), từ D vẽ DE ^ BC (E Î BC). Chứng minh DA = DE.
c) ED cắt AB tại F. Chứng minh DADF = DEDC rồi suy ra DF > DE
Bài 1: Cho hình vuông ABCD cạnh 4cm. Tính độ dài các đường chéo AC, BD.
Bài 2: Cho hình chữ nhật ABCD có AB cm AD cm = = 3 , 27 . Tính độ dài AC.
Bài 3: Cho ABC vuông tại A, AH ⊥ BC tại H. Tính độ dài các cạnh của tam giác ABC biết AH cm HB cm HC cm = = = 6 , 4 , 9
Bài 1: Cho tam giác ABC vuông tại A. Tính BC biết : a) AB cm AC cm = = 3 , 3 . b) AB cm AC cm = = 4 , 6 c) AB cm AC cm = = 5 , 3 d) 3 4 , 5 5 AB cm AC cm
a) Áp dụng định lý Py - ta - go vào \(\Delta ABC\)vuông tại \(A\)
\(BC^2=AB^2+AC^2\)
\(BC^2=3^2+3^2\Rightarrow BC=3\sqrt{2}cm=18\left(cm\right)\)
b) Áp dụng định lý Py - ta - go vào \(\Delta ABC\)vuông tại \(A\)ta có :
\(BC^2+AB^2+AC^2\)
\(BC^2=4^2+6^2\)
\(BC=28\left(cm\right)\)
c) Áp dụng định lý Py - ta - go vào \(\Delta ABC\)vuông tại \(A\), ta có :
\(BC^2=AB^2+AC^2=BC^2=5^2+3^2\Rightarrow BC=25+9=34\left(cm\right)\)
d) Áp dụng định lý Py - ta - go vào \(\Delta ABC\)vuông tại \(A\)ta có :
\(BC^2=AB^2+AC^2=BC^2=5^2+5^2=5\sqrt{2}=50\left(cm\right)\)
bài 3: Cho tam giác ABC cân tại A có AB = AC = 5cm, BC = 8cm. Gọi H là trung điểm của BC. Tính AH
Bài 4: Cho ABC có AB= 15 cm, AC = 20 cm, BC = 25 cm. Kẻ AH vuông góc với BC tại H. a) Chứng minh: ABC vuông tại A b) Tính diện tích ABC c) Tính AH giúp mik với trình bày rõ cho mik nha
Bài 5: Cho ABC vuông cân tại A. Biết AB cm = 2 . Tính BC
Bài 6: Cho ABC vuông cân tại A. Biết BC cm = 2 . Tính AB, AC.Mk cần gấp cho buổi tối nay.Giúp mk vsTam giác ABC vuông cân tại A
=> AB = AC = 2
Áp dụng định lý Pytago vào tam giác vuông ABC có :
AB2 + AC2 = BC2
<=> 22 + 22 = BC2
<=> BC2 = 8
<=> BC = \(\sqrt{8}\)cm
6) Tam giác ABC vuông cân tại A
=> AB = AC
Áp dụng định lý Pytago vào tam giác vuông ABC có :
AB2 + AC2 = BC2
=> 2.AB2 = BC2 (AB = AC)
=> 2.AB2 = 22
=> AB2 = 2
=> AB = AC = \(\sqrt{2}\)(cm)
Trả lời:
Bài 5:
Xét tam giác ABC vuông cân tại A, có:
BC2 = AB2 + AC2 ( định lí Py-ta-go )
=> BC2 = 22 + 22 ( vì AB = AC do tam giác ABC cân tại A )
=> BC2 = 8
=> BC = \(\sqrt{8}\left(cm\right)\)
Vậy BC = \(\sqrt{8}\left(cm\right)\)
Bài 6:
Xét tam giác ABC vuông cân tại A, có:
AB2 + AC2 = BC2 ( định lí Py-ta-go )
=> 2.AB2 = BC2 ( vì AB = AC do tam giác ABC cân tại A )
=> 2.AB2 = 22
=> AB2 = 22 : 2
=> AB2 = 2
=> AB = \(\sqrt{2}\left(cm\right)\)
=> AC = \(\sqrt{2}\left(cm\right)\)
Vậy AB = AC = \(\sqrt{2}\left(cm\right)\)
Bài 6 : cho tam giác ABC vuông tại A, Có BC = 26 cm, AB =AC = 5:12. Tính độ dài AB và AC
Giup mk !!
Bài 1 Cho hình vuông ABCD cạnh 4cm. Tính độ dài các đường chéo AC, BD
.Bài 2 Cho hình chữ nhật ABCD có AB=3cm AD=\(\sqrt{27}\) cm . Tính độ dài AC.\
Bài 3 Cho ABC vuông tại A, AH ⊥ BC tại H. Tính độ dài các cạnh của tam giác ABC biết AH=6 cm HB=4 cm HC=9 cm .
Bài 1 :
Vì ABCD là hình vuông \(\Rightarrow\widehat{DAB}=\widehat{ABC}=\widehat{BCD}=\widehat{CDA}=90^0\)
\(\Rightarrow AB=BC=CD=AD=4\)cm
Áp dụng định lí pytago tam giác ADC vuông tại D ta có :
\(AC^2=AD^2+CD^2=16+16=32\Rightarrow AC=4\sqrt{2}\)cm
Vì ABCD là hình vuông nên 2 đường chéo bằng nhau AC = BD = 4\(\sqrt{2}\)cm
Bài 2 :
Vì ABCD là hình chữ nhật nên \(AB=CD;AD=BC\)
Áp dụng định lí Pytago tam giác ACD vuông tại D ta có :
\(AC^2=AD^2+DC^2=27+9=36\Rightarrow AC=6\)cm
Bài 3 :
Áp dụng định lí Pytago cho tam giác ABH vuông tại H ta có :
\(AB^2=BH^2+AH^2=16+36=52\Rightarrow AB=2\sqrt{13}\)cm
Áp dụng định lí Pytago cho tam giác ACH vuông tại H ta có :
\(AC^2=CH^2+AH^2=81+36=117\Rightarrow AC=3\sqrt{13}\)cm
\(BC=CH+BH=9+4=13\)cm
Đính chính lại bài trước sai chính tả : Cho tam giác ABC vuông tại A có AB=6 cm
Bài 1. Cho tam giác ABC vuông tại A có AB = 6 cm, AC = 8 cm, NP = 5 cm và ABC ~
MNP. Khẳng định nào sau đây là sai:
A. NMP = 90
B. BC = 10 cm
C. MP = 4 cm.
D. MP = 3 cm.
giúp mik vs mik đang cần gấp
Bài 1: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AH=24 cm và HC=18 cm. Tính: BH, ,BC,AC,AB và diện tích tam giác ABC Bài 2: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB= 12 cm và BC=20 cm. Tính: BH, ,AC,HC,AH và diện tích tam giác ABC Bài 3: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=3 cm và AC=4 cm. Tính: BH, ,BC,HC,AH và diện tích tam giác ABC Bài 4: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AC=15 cm và AH =12 cm. Tính: BH, ,BC,AB,AH và diện tích tam giác ABC Bài 5:Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=20 cm và HC=9cm. Tính: BH, ,BC,AC,AH và diện tích tam giác ABC
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
Bài 3: Cho tam giác ABC có đường cao BH. Biết AB = 40 cm, AC = 58 cm, BC = 42 cm
a) ABC có là tam giác vuông không? vì sao?
b) Tính các tỉ số lượng giác của góc A
c) Kẻ HE vuông AB tại E, HF vuông BC tại F. Tính BH, BE, BF và diện tích EFCA
Bài 3:
Giải tam giác MNP vuông tại M có góc N = 37 độ, NP 25 cm (độ dài làm tròn đến chữ số thập phân thứ nhất, góc làm tròn đến độ
Mong bạn Phong giúp mình:((
Lưu ý: Giải chi tiết từng bước
Bài 3:
Ta có:
\(\widehat{M}+\widehat{N}+\widehat{P}=180^o\)
\(\Rightarrow\widehat{P}=180^o-90^o-37^o=53^o\)
Mà: \(sinN=\dfrac{MN}{NP}\)
\(\Rightarrow sin37^o=\dfrac{MN}{25}\)
\(\Rightarrow MN=25\cdot sin37^o\approx15\left(cm\right)\)
Áp dung định lý Py-ta-go ta có:
\(MP=\sqrt{NP^2-MN^2}=\sqrt{25^2-15^2}=20\left(cm\right)\)
3:
a: Xét ΔABC có AC^2=BA^2+BC^2
nên ΔBAC vuông tại B
b: Xét ΔBAC vuông tại B có
sin A=BC/AC=42/58=21/29
cos A=AB/AC=40/58=20/29
tan A=BC/BA=21/20
cot A=BA/BC=20/21
c: Xét ΔABC vuông tại B có BH là đường cao
nên BH*AC=BA*BC; BA^2=AH*AC; CB^2=CH*CA
=>BH*58=40*42=1680
=>BH=840/29(cm)
BA^2=AH*AC
=>AH=BA^2/AC=40^2/58=800/29cm
CB^2=CH*CA
=>CH=CB^2/CA=42^2/58=882/29(cm)
ΔBHA vuông tại H có HE là đường cao
nênBE*BA=BH^2
=>BE*40=(840/29)^2
=>BE=17640/841(cm)
ΔBHC vuông tại H có HF là đường cao
nênBF*BC=BH^2
=>BF*42=(840/29)^2
=>BF=16800/841(cm)
Xét tứ giác BEHF có
góc BEH=góc BFH=góc EBF=90 độ
=>BEHF là hình chữ nhật
=>góc BFE=góc BHE(=1/2*sđ cung BE)
=>góc BFE=góc BAC
Xét ΔBFE và ΔBAC có
góc BFE=góc BAC
góc FBE chung
Do đó: ΔBFE đồng dạng với ΔBAC
=>S BFE/S BAC=(BF/BA)^2=(16800/441:40)^2=(420/841)^2
=>S AECF=S ABC*(1-(420/841)^2)
=>\(S_{AECF}=\dfrac{1}{2}\cdot40\cdot42\cdot\left[1-\left(\dfrac{420}{841}\right)^2\right]\simeq630,5\left(cm^2\right)\)
Đã đăng lên cộng đồng thì phải nhờ đến tất cả chứ bạn, nếu nhờ riêng ai đó thì mời ib?
Đăng như vậy có ngày không ai giúp bạn đâu.