Cho 3x+2/7=4y-5/11=3x+4y-4/9x
Đề bài: Tìm x,y thỏa mãn.
Bài 1:Cho a,b là các số nguyên tố thỏa mãn: (a-1) chia hết cho b và (b3 - 1) chia hết cho a.Chứng minh: a= b2+b+1
Bài 2:Cho x,y là hai số thực thỏa mãn:
x3 + y3 +3x2 + 4x + 3y2 +4y +4=0.Tìm giá trị lớn nhất của biểu thức P=1/x+1/y
1) Vì a, b là số nguyên tố và a - 1 chia hết cho b nên a là số nguyên tố lẻ >=3 và b =2( vì a -1 chẵn)
b3 - 1 = 7 chia hết cho a, nên a =7. Vậy a = b2 + b + 1( 7 = 22 + 2 + 1)
tìm số nguyên dương x; y thỏa mãn :
3x - 4y =21
Tìm số nguyên dương x ; y nhỏ hơn 10 thỏa mãn :
3x - 4y = 21
tìm các số nguyên x , y thỏa mãn đẳng thức :
\([(x-y)^2+2(xy+y^2-4y)]\)=xy+y2-4y
Bài 1. Cho các số a, b thỏa mãn \(a^2+b^2=ab+3\left(a+b\right)\)Tính giá trị \(\left(a-2\right)^{2018}+\left(b-2\right)^{2019}\)
Bài 2.Tìm các số nguyên x, y thỏa mãn \(x^2+2y^2< 2xy+4y-3\)
bài1: Cho hệ phương trình :\(\left\{{}\begin{matrix}2mx+3y=5\\\left(m+1\right)x+y=2\end{matrix}\right.\) tìm m để hpt có nghiệm duy nhất thỏa mãn x<0, y là số nguyên
Bài 2: tìm tất cả các số nguyên x, y thỏa mãn : \(^{x^2+2y^2-2xy-4y+3=0}\)
2) ĐK: x;y ∈ Z
pt ⇔ \(\left(x-y\right)^2+\left(y-1\right)\left(y-3\right)=0\)
=> I) a) x-y=0 => x=y
b) y-1=0 => y=1 => x=y=1(nhận)
II) a) x-y=0 => x=y
b) y-3=0 => y=3 => x=y=3(nhận)
Bài 1. a, Cho a,b \(\in\) Z thỏa mãn a - b là bội của 6. Xét xem các số a + 11b và 5a + b có phải là bội của 6 không?
b, Tìm cặp số nguyên x,y biết: 2xy + 3x - 4y = 12
Bài 5 : Tìm giá trị nguyên dương của x ; y nhỏ hơn 10 sao cho : 3x - 4y = -21
1, Tìm số tự nhiên x,y thỏa mãn:
a, 5x-y=13
b, 23x+53y=109
c, 12x-5y=21
d, 12x+17y=41
2, Tìm số nguyên x,y thỏa mãn:
a, 5(x+y)+2=3xy
b, 2(x+y)=5xy
c, 3x+7=y(x-3)