2) ĐK: x;y ∈ Z
pt ⇔ \(\left(x-y\right)^2+\left(y-1\right)\left(y-3\right)=0\)
=> I) a) x-y=0 => x=y
b) y-1=0 => y=1 => x=y=1(nhận)
II) a) x-y=0 => x=y
b) y-3=0 => y=3 => x=y=3(nhận)
2) ĐK: x;y ∈ Z
pt ⇔ \(\left(x-y\right)^2+\left(y-1\right)\left(y-3\right)=0\)
=> I) a) x-y=0 => x=y
b) y-1=0 => y=1 => x=y=1(nhận)
II) a) x-y=0 => x=y
b) y-3=0 => y=3 => x=y=3(nhận)
Giải hệ phương trình
\(\left\{{}\begin{matrix}4\left(2x-y+3\right)-3\left(x-2y+3\right)=48\\3\left(3x-4y+3\right)+4\left(4x-2y-9\right)=48\end{matrix}\right.\)
\(\left\{{}\begin{matrix}6\left(x+y\right)=8+2x-3y\\5\left(y-x\right)=5+3x+2y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}-2\left(2x+1\right)+1,5=3\left(y-2\right)-6x\\11,5-4\left(3-x\right)=2y-\left(5-x\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{8x-5y-3}{7}+\dfrac{11y-4x-7}{5}=12\\\dfrac{9x+4y-13}{5}-\dfrac{3\left(x-2\right)}{4}=15\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2\sqrt{3}x-\sqrt{5}y=2\sqrt{6}-\sqrt{15}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)
Giải hệ phương trình
a)\(\left\{{}\begin{matrix}6x^2-3xy+x=1-y\\x^2+y^2=1\end{matrix}\right.\) c)\(\left\{{}\begin{matrix}\left|x+1\right|+\left|y-1\right|=5\\\left|x+1\right|-4y+4=0\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}2x^2-2x+xy-y=0\\x^2-3xy+4=0\end{matrix}\right.\)
Giải các hệ phương trình :
a) \(\left\{{}\begin{matrix}\left(x-3\right)\left(2y+5\right)=\left(2x+7\right)\left(y-1\right)\\\left(4x+1\right)\left(3y-6\right)=\left(6x-1\right)\left(2y+3\right)\end{matrix}\right.\);
b) \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)\left(2xy\right)\\\left(y-x\right)\left(y+1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\).
Cho \(\left\{{}\begin{matrix}x +my=2\\mx-2y=1\end{matrix}\right.\)a) tìm \(m\in Z\) để hệ có nghiệm duy nhất (x; y) sao cho x lớn hơn 0 và y lớn hơn 0 b) tìm \(m\in Z\) để hệ có nghiệm duy nhất (x; y) sao cho (x; y) nguyên
\(\left\{{}\begin{matrix}x^2+y^2+x+y=8\\x^2-3y^2+2xy-x+5y-2=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}3x+5y=9-2xy\\2x+3y=10-xy\end{matrix}\right.\)
Giải hệ phương trình
giúp mình nha sắp phải nộp r
Giải hệ phương trình
a)\(\left\{{}\begin{matrix}x+y=\dfrac{x-3}{2}\\x+2y=\dfrac{2-4y}{15}\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=-1\\\dfrac{3}{x}-\dfrac{2}{y}=7\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\sqrt{x+3}-2\sqrt{y+1}=2\\2\sqrt{x+3}+\sqrt{y+1}=4\end{matrix}\right.\) d)\(\left\{{}\begin{matrix}\dfrac{7}{\sqrt{x}-7}-\dfrac{4}{\sqrt{y}+6}=\dfrac{5}{3}\\\dfrac{5}{\sqrt{x}-7}+\dfrac{3}{\sqrt{y}+6}=2\dfrac{1}{9}\end{matrix}\right.\)
1)\(\left\{{}\begin{matrix}x^2-y^2-2x+2y=0\\x^2-3xy+5y^2-3=0\end{matrix}\right.\)
2)\(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{1-y}=1\\\frac{1}{x-1}-\frac{1}{y}=2\end{matrix}\right.\)
3)\(\left\{{}\begin{matrix}x^2-4x+3=0\\x^2+xy+y^2=1\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}x^2+y^2+x+y=2\\\left(x+1\right)^2-\left(y+2\right)^2=0\end{matrix}\right.\)
cho hệ phương trình với là tham\(\left\{{}\begin{matrix}x+y=2m+1\\2x-y=m+2\end{matrix}\right.\) số tìm m để hpt có nghiệm (x;y)thỏa mãn (x+1)(y-3)<0
cho he phuong trinh:
\(\left\{{}\begin{matrix}x+2y=m+1\\2x+3y=m-2\end{matrix}\right.\)
a. Giai he pt vs m=1
b. Tim m de he pt co nghiem (x;y) thoa man \(\left\{{}\begin{matrix}x>3\\y< 5\end{matrix}\right.\)