Lời giải:
Cộng 2 pt theo vế có:
$3x=3m+3\Rightarrow x=m+1$
$y=x-(2m+1)=m+1-(2m+1)=-m$
Khi đó:
$(x+1)(y-3)<0$
$\Leftrightarrow (m+1+1)(-m-3)<0$
$\Leftrightarrow (m+2)(m+3)>0$
$\Leftrightarrow m>-2$ hoặc $m<-3$
Lời giải:
Cộng 2 pt theo vế có:
$3x=3m+3\Rightarrow x=m+1$
$y=x-(2m+1)=m+1-(2m+1)=-m$
Khi đó:
$(x+1)(y-3)<0$
$\Leftrightarrow (m+1+1)(-m-3)<0$
$\Leftrightarrow (m+2)(m+3)>0$
$\Leftrightarrow m>-2$ hoặc $m<-3$
cho hệ phương trình
\(\left\{{}\begin{matrix}-2mx+y=5\\mx+3y+1\end{matrix}\right.\)
a)giải hệ phương trình khi m=2
b)giải hệ phương trình theo m
c)tìm m để hệ có nghiệm (x;y) là các số dương
d)tìm m để hệ phương trình có nghiệm thỏa mãn x^2+y^2=1
Cho hệ phương trình \(\left\{{}\begin{matrix}\left(m-1\right)x+y=2\\x+2y=2\end{matrix}\right.\) ( m là tham số và x,y là các ẩn số)
Tìm tất cả các giá trị nguyên của m để hệ phương trình có nghiệm (x,y) trong đó x,y là các số nguyên
cho hệ phương trình : \(\left\{{}\begin{matrix}x+my=3m\\mx-y=m^2-2\end{matrix}\right.\)
a, giải hệ khi m=3
b, tìm m để hệ (1) có nghiệm(x;y) thỏa mãn \(x^2-2x+y>0\)
Cho \(\left\{{}\begin{matrix}x +my=2\\mx-2y=1\end{matrix}\right.\)a) tìm \(m\in Z\) để hệ có nghiệm duy nhất (x; y) sao cho x lớn hơn 0 và y lớn hơn 0 b) tìm \(m\in Z\) để hệ có nghiệm duy nhất (x; y) sao cho (x; y) nguyên
giải hệ pt bằng phương pháp thế:
\(\left\{{}\begin{matrix}3x-y=2m+3\\x+2y=3m+2\end{matrix}\right.\)
a,giải hệ pt biết m=2
b,tìm m để hpt có nghiệm x,y t/m.
Giải hệ phương trình sau bằng phương pháp thế
1) \(\left\{{}\begin{matrix}x-2y=4\\-2x+5y=-3\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}2x+y=10\\5x-3y=3\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}x+2y=4\\-3x+y=7\end{matrix}\right.\)
cho hệ PT \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.
\)
a) Tìm m để hệ trên có nghiệm duy nhất sao cho x,y đạt GTNN
Mọi Ng giúp em với
Ai làm hết em tick đúng nha ( trước 19:00 hôm nay)
Bài 1: Giải hệ phương trình sau theo m
a, \(\left\{{}\begin{matrix}x-my=m^2+1\\mx+y=m^2+1\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}x+y=m-2\\\left(m+2\right)x-4y=m^2-4\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}2x+my=m+2\\\left(m+1\right)x+2my=2m+4\end{matrix}\right.\)
d, \(\left\{{}\begin{matrix}mx+2y=3\\m^2x-4y=-6\end{matrix}\right.\)
Giải hệ phương trình
a)\(\left\{{}\begin{matrix}6x^2-3xy+x=1-y\\x^2+y^2=1\end{matrix}\right.\) c)\(\left\{{}\begin{matrix}\left|x+1\right|+\left|y-1\right|=5\\\left|x+1\right|-4y+4=0\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}2x^2-2x+xy-y=0\\x^2-3xy+4=0\end{matrix}\right.\)