Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bí mật
Xem chi tiết
Yeutoanhoc
28 tháng 2 2021 lúc 16:49

Áp dụng cosi

`1/x^2+1/y^2>=2/(xy)`

`=>1/2>=2/(xy)`

`=>xy>=4`

Aps dụng cosi

`=>x+y>=2\sqrt{xy}=2.2=4`

Dấu "=" xảy ra khi `x=y=4`

✿✿❑ĐạT̐®ŋɢย❐✿✿
28 tháng 2 2021 lúc 16:52

Có : \(\dfrac{1}{2}=\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge2\sqrt{\dfrac{1}{x^2}\cdot\dfrac{1}{y^2}}=\dfrac{2}{xy}\)

\(\Rightarrow xy\ge4\)

Ta có : \(A=x+y\ge2\sqrt{xy}=2\sqrt{4}=4\)

Dấu "=" xảy ra khi \(x=y=2\)

Vậy min A = 4 khi $x=y=2$

Tạ Uyên
Xem chi tiết
Tạ Uyên
28 tháng 4 2022 lúc 19:41

Giúp mình câu này với ah. 

 

hong nguyen
Xem chi tiết
Rosie
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 6 2023 lúc 23:27

(x+y)^2/x^2+y^2+(x+y)^2/xy>=(x+y)^2/x^2+y^2+xy

Dấu = xảy ra khi (x+y)^2/2xy=x/2y+y/2x+1

=>Min=2

Rosie
Xem chi tiết
Akai Haruma
28 tháng 5 2022 lúc 11:30

Đề có vẻ không đầy đủ lắm. Bạn coi lại. 

conan
Xem chi tiết
Nguyễn Gia Khánh
8 tháng 6 2023 lúc 18:46

\(\dfrac{1}{x}+\dfrac{2}{y}\le1\Rightarrow\dfrac{2}{y}\le1-\dfrac{1}{x}\Rightarrow y\ge\dfrac{2x}{x-1}=2+\dfrac{2}{x-1}\)

\(x+\dfrac{2}{z}\le3\Rightarrow x< 3;\dfrac{2}{z}\le3-x\Rightarrow z\ge\dfrac{2}{3-x}\Rightarrow y+z\ge2+\dfrac{2}{x-1}+\dfrac{2}{3-x}\)

Lúc này ta sẽ áp dụng bất đẳng thức Bunhiacopski

Ta có:

\(6^2\le\left(y+z\right)^2=\left(\sqrt{2}\dfrac{y}{\sqrt{2}}Z\right)^2\le3\left(\dfrac{y^2}{2}+z^2\right)=\dfrac{3}{2}\left(y^2+2z^2\right)\)

\(\Rightarrow P\ge24\). Dấu đẳng thức xảy ra khi và chỉ khi \(y=4,z=2\) 

Vậy giá trị nhỏ nhật của P là 24

VUX NA
Xem chi tiết
Hồng Phúc
21 tháng 8 2021 lúc 16:24

Áp dụng BĐT AM-GM:

\(P=\dfrac{x^2}{y-1}+\dfrac{y^2}{x-1}\)

\(=\dfrac{x^2}{y-1}+4\left(y-1\right)+\dfrac{y^2}{x-1}+4\left(x-1\right)-4\left(x+y\right)+8\)

\(\ge2\sqrt{\dfrac{x^2}{y-1}.4\left(y-1\right)}+2\sqrt{\dfrac{y^2}{x-1}.4\left(x-1\right)}-4\left(x+y\right)+8\)

\(\ge4\left(x+y\right)-4\left(x+y\right)+8=8\)

\(\Rightarrow P_{min}=8\Leftrightarrow x=y=2\)

Nguyễn Việt Lâm
21 tháng 8 2021 lúc 16:24

\(\dfrac{x^2}{y-1}+4\left(y-1\right)\ge4x\) ; \(\dfrac{y^2}{x-1}+4\left(x-1\right)\ge4y\)

Cộng vế:

\(P+4\left(x+y\right)-8\ge4\left(x+y\right)\Rightarrow P\ge8\)

Dấu "=" xảy ra khi \(x=y=2\)

IDO cường nứng
Xem chi tiết
Trần Anh Hoàng
Xem chi tiết
Akai Haruma
12 tháng 1 2023 lúc 19:23

Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{2}{x}+\frac{8}{9y}+\frac{18}{25z}\right)(x+y+z)\geq (\sqrt{2}+\sqrt{\frac{8}{9}}+\sqrt{\frac{18}{25}})^2\)

$\Leftrightarrow A.2\geq \frac{2312}{225}$

$\Leftrightarrow A\geq \frac{1156}{225}$

Vậy $A_{\min}=\frac{1156}{225}$

Ashley
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 5 2023 lúc 23:19

A>=1/(1+xy)=1/2

Dấu = xảy ra khi x=y=1