Cho tam giác ABC, trực tâm H, kẻ BX vg góc vs AB, CI vg góc vs AC. Gọi D là giao điểm của BX và CI c/m: a) Tứ giác BHCD là hình bình hành b) Gọi O là trung điểm của BC. C/m H,O,D thẳng hàng.
cho tam giác ABC có 3 góc nhọn . H là trực tâm qua B kẻ Bx vuông góc với AB, qua C kẻ Cy vuông góc với AC. Gọi giao điểm của Bx và Cy là D. a) CM tứ giác BHCD là hình bình hành b) Gọi I là trung điểm của AB . CM : IB=IC c) Tìm điều kiện của tam giác ABC để tứ giác BHCD là hình bình hành
a: Xét tứ giác BHCD có
BH//CD
CH//BD
DO đó: BHCD là hình bình hành
Câu b và c sai đề rồi bạn
cho tam giác ABC có 3 góc nhọn . H là trực tâm qua B kẻ Bx vuông góc với AB, qua C kẻ Cy vuông góc với AC. Gọi giao điểm của Bx và Cy là D.
a) CM tứ giác BHCD là hình bình hành
b) Gọi I là trung điểm của AB . CM IB=IC
c) Tìm điều kiện của tam giác ABC để tứ giác BHCD là hình bình hành
a: Xét tứ giác BHCD có
BH//CD
CH//BD
DO đó: BHCD là hình bình hành
Câu b và c sai đề rồi bạn
cho tam giác ABC có 3 góc nhọn . H là trực tâm qua B kẻ Bx vuông góc với AB, qua C kẻ Cy vuông góc với AC. Gọi giao điểm của Bx và Cy là D.
a) CM tứ giác BHCD là hình bình hành
b) Gọi I là trung điểm của AB . CM IB=IC
c) Tìm điều kiện của tam giác ABC để tứ giác BHCD là hình chữ nhật
1)
H là trực tâm của tam giác ABC => BH vuông góc với AC
Mà DC lạ vuông góc với AC(gt)
=> BH song song DC (1)
H là trực tâm của tam giác ABC => CH vuông góc với AB
Mà DB lạ vuông góc với AB(gt)
=> CH song song DB (2)
Từ (1) và (2) => Tứ giác BHCD có CH song song với DB; BH song song với CD
=> BHCD là hình bình hành.
2) BHCD là hình bình hành nên đường chéo cắt nhau tại trung điểm mỗi đường
=> M cũng là trung điểm của HD
mà O là trung điểm của AD
=> OM là đường trung bình tam giác ADH
=> OM = 1/2AH (dpcm)
3) và OM//AH
mà AH vuông góc BC
=> OM vuông góc với BC
gọi I là giao điểm của AM và OH
do AH//OM (cùng vuông góc BC)
=> tam giác IAH đồng dạng IMO
=> IA/IM = AH/OM = 2OM/OM = 2
=> điểm I thuộc trung tuyến AM và cách A một khoảng như trọng tâm G
=> I trùng G
vậy H,G,O thẳng hàng
cho tam giác ABC nhọn trực tâm H . qua B kẻ đường thẳng vuông góc với AB , qua C kẻ đường thẳng vuông góc với AC ,2 đường thẳng cắt nhau tại D.
a, tứ giác BHCD là hình bình hành
b, gọi M là trung điểm của BC . chứng minh H,M,D thẳng hàng
c, gọi O là trubg điểm của AD . chứng minh AH = 2DM
a: Xét tứ giác BHCD có
BH//CD
BD//CH
DO đó: BHCD là hình bình hành
Cho tam giác ABC có H là trực tâm. Kẻ Bx vuông góc AB tại B và Cy vuông góc AC tại C, Bx cắt Cy tại D.
a/ Tứ giác BHCD là hình gì?
b/ Gọi M là giao điểm giữa BH và AC, N là trung điểm của CM, I là trung điểm của BC; chứng minh: IN vuông góc AC.
c/ Tìm điều kiện của tam giác ABC để tứ giác BHCD là hình thoi.
bài 1: cho tam giác ABC cóa 3 đường cao cắt nhau tại trực tâm H kẻ Bx vuông góc AB,Cy vuông góc AC. Gọi D là giao điểm của Bx và Cy. Chứng minh rằng:
a) BHCD là hình bình hành
b) Gọi O là trung điểm của BC. CMR 3 điểm H,O,D thẳng hàng
mong mọi ngừ giúp em sớm ạ
mọi người giúp mình với
cho tam giác ABC có H là trực tâm. Trên nửa mặt phẳng bờ chứa BC không chứa điểm A, vẽ Bx vuông góc AB, Cy vuông góc AC. Bx cắt Cy ở D.
a) CM: tứ giác BHCD là hình bình hành
b) gọi O là trung điểm BC. chứng minh: H, O, D thẳng hàng
c) gọi I là trung điểm AD. CM: AH=2IO
Mình giải câu a nha ( bạn nào biết làm câu b với câu c thì giúp bạn ấy )
a) Gọi AD ; BE ; CF là đường cao của t/g ABC
=> CE vuông góc với AB
BE vuông góc với AC
Mà Bx vuông góc với AB
=> Bx // CE
Cy vuông góc với AC
=> Cy // BE
=> tứ giác BHCD là hình bình hành
giải dùm mình câu c
mình giải câu b nha:
Vì BHCD là hình bình hành => 2 đg chéo giao nhau tại trung điểm của mỗi đường
mà O lại là trung điểm của BC
=> đường chéo HD đi qua O =>H,O,D thẳng hàng (đpcm)
cho tam giác ABC nhọn,Hlà trực tâm.đường thẳng vuông góc với AB kẻ từ B cắt đường thẳng vuông góc với AC kẻ từ C tại D
a,c/m tứ giác BHCD là hình bình hành
b,gọi M là trung điểm BC,O là trung điểm AD.c/m:2OM=AH
c,gọi G là trọng tâm tam giác ABC.c/m:3 điểm H,G,O thẳng hàng
1. Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từB cắt đường thẳng vuông góc với AC kẻ từ C tại D.
a. Chứng minh tứ giác BHCD là hình bình hành.
b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH.
c. Gọi G là trọng tâm tam giác ABC. Chứng minh ba điểm H, G, O thẳng hàng
trực tâm ở cạnh nào hay góc nào bạn?
có trực tâm chính xác sẽ làm dễ hơn
Bạn xem lại đề xem có nhầm không nhé! Vì:
Nếu BHCD hbh thì CD//HB (1)
Mặt khác: A,C,D thẳng hàng mà AC\(\perp\)BH => CD\(\perp\)HB (2)
Từ (1) và (2) => Mâu thuẫn
Bạn có thể tham khảo bài này tại địa chỉ này:
Sách: nâng cao & phát triển toán 7 - tập 2, phần hình học, trang 65, bài 182